Экологические эффекты энергосбережения

Экологические проблемы энергосбережения

1.

2.

3.

4. Гидроэлектростанции и окружающая среда.

1. Влияние энергетики на окружающую среду

Энергетика – один из источников неблагоприятного воздействия на окружающую среду и человека. Она влияет на атмосферу (потребление кислорода, выбросы газов, влаги и твердых частиц), гидросферу (потребление воды, создание искусственных водохранилищ, сбросы загрязненных и нагретых вод, жидких отходов) и на литосферу (потребление ископаемых топлив, изменение ландшафта, выбросы токсичных веществ).

Глобальное потребление топлива возросло в 30 раз почти за 200 лет, прошедших со времени начала индустриальной эпохи.

Подобный рост потребления энергии происходил спонтанно, независимо от воли человека. Это не только не вызывало тревоги у широкой общественности, но и рассматривалось как благоприятный фактор развития человечества.

Общепринятая классификация подразделяет источники первичной энергии на коммерческие и некоммерческие.

Коммерческие источники энергии включают в себя твердые (каменный и бурый уголь, торф, горючие сланцы, битуминозные пески), жидкие (нефть и газовый конденсат), газообразные (природный газ) виды топлива и первичное электричество (электроэнергия, произведенная на ядерных гидро-, ветровых, геотермальных, солнечных, приливных и волновых станциях).

К некоммерческим относят все остальные источники энергии (дрова, сельскохозяйственные и промышленные отходы, мускульная сила рабочего скота и собственно человека).

Мировая энергетика в целом основана преимущественно на коммерческих энергоресурсах.

Подобный акцент характерен для длительной индустриальной фазы развития общества в прошлом и, вне всякого сомнения, сохранится и в ближайшие десятилетия.

Однако в последующую четверть века произошли значительные изменения в мировой энергетике, связанные прежде всего с переходом от экстенсивных путей ее развития, от энергетической эйфории к энергетической политике, основанной на повышении эффективности использования энергии и всемерной ее экономии.

Поводом для этих изменений стали энергетические кризисы 1973 и 1979 гг., стабилизация запасов ископаемого топлива и удорожание его добычи, желание уменьшить обусловленную экспортом энергоресурсов зависимость экономики от политической нестабильности в мире. К этому стоит добавить всевозрастающее осознание правительствами цивилизованных стран потенциальной опасности крупномасштабных последствий развития энергетики и озабоченность по поводу растущей деградации условий жизни в связи с экологическим прессом на локальном уровне (кислотные дожди, загрязнение воздуха и воды, тепловое загрязнение).

В течение всей первой половины ХХ столетия уголь с явным преимуществом держал первенство среди источников коммерческой энергии (более 60 % до 1950 г.). Однако в послевоенные годы резко увеличивается добыча нефти, что связано с открытием новых месторождений и с колоссальными потребительскими достоинствами этого вида ископаемого топлива.

Вклад первичного электричества в мировой энергобаланс не являлся определяющим в прошлом (4,3 % в 1950 г.), не определяет энергетику мира в целом и в настоящее время (около 12,6 % в 1995 г.). Отметим, что пересчет первичного электричества производился на основе соотношения, учитывающего глобально осредненный КПД ТЭС равный 0,385 – это равносильно утверждению, что 1 кВт·ч = 0,319 кг у. т. (так называемый «физический эквивалент» 1 кВт·ч первичного электричества, часто без должных оснований используемый в мировой литературе и не предполагающий отличий между тепловой и электрической энергией, составляет лишь 0,123 кг у. т.).

2. Тепловые электростанции и окружающая среда

ТЭС, потребляя энергоресурсы в виде твердого, жидкого и газообразного топлива, производят электрическую (до 75 % общей выработки электроэнергии мира) и тепловую энергии, при этом вся материальная масса топлива превращается в отходы, поступающие в окружающую среду в виде газообразных и твердых продуктов сгорания (рис. 1). Эти отходы в несколько раз (при сжигании газа в 5, а при сжигании антрацита в 4 раза) превышают массу использованного топлива.

Рис. 1. Влияние ТЭС на окружающую среду

1 – котел; 2 – дымовая труба; 3 – турбина; 4 – генератор; 5 – подстанция; 6 – конденсатор; 7 – конденсатами насос; 8 – питательный насос; 9 – линия электропередачи; 10 – потребители электроэнергии

Выбрасываемые в окружающую среду продукты сгорания определяются видом и качеством топлива, а также методом его сжигания. В настоящее время около 70% общего производства электроэнергии ТЭС обеспечивается конденсационными электростанциями.

Вся тепловая энергетика мира ежегодно выбрасывает в атмосферу Земли более 200 млн т оксида углерода, более 50 млн т различных углеводородов, почти 150 млн т диоксида серы, свыше 50 млн т оксида азота, 250 млн т мелкодисперсных аэрозолей. Производство электрической и тепловой энергии на базе органического топлива является, таким образом, уникальным по масштабам материального и энергетического обмена с окружающей средой. Ни у кого не вызывает сомнения, что подобная «деятельность» тепловой энергетики вносит существенный вклад в нарушение того баланса установившихся в биосфере круговых процессов, которое все отчетливее стало проявляться в последние годы. Нарушение баланса отмечается не только по вредным веществам (оксиды серы и азота), но и по углекислому газу. Этот дисбаланс с увеличением масштабов производства электроэнергии на базе органического топлива может, как теперь многие считают, в отдаленной перспективе привести к значительным экологическим последствиям для всей нашей планеты.

Не меньшую тревогу вызывают и огромные безвозвратные потери кислорода из атмосферы.

В зависимости от вида топлива, метода его сжигания и способа удаления золы из топки котла последняя в ряде случаев представляет собой ценное сырье для промышленности строительных материалов и сельского хозяйства (известкование кислых почв и удобрение).

Процессу производства электроэнергии на ТЭС сопутствует также появление различных загрязняющих стоков, связанных с процессом во-доподготовки, консервацией и промывкой оборудования, гидротранспортом золошлаковых отходов. Эти стоки при сбросах в водоёмы губительно влияют на их флору и фауну. В результате создания замкнутых систем водоснабжения снижается или устраняется это влияние.



Большое количество воды используется ТЭС в различных теплообменных устройствах для конденсации отработавшего пара, водо-, масло-, газо- и воздухоохлаждения. Для этих целей вода забирается из какого-либо поверхностного источника (озера, водохранилища, реки) и при прямоточной схеме после использования в указанных устройствах возвращается обратно в те же источники. Эта вода вносит в используемый водоем большое количество теплоты и создает так называемое тепловое загрязнение его. Такого рода загрязнение воздействует на биологические и химические процессы, определяющие жизнедеятельность растительных и животных организмов населяющих естественные водоемы, и нередко приводит к их гибели, интенсивному испарению воды с поверхностей водоемов, изменению гидрологических характеристик стока, повышению растворимости пород в ложах водоемов, ухудшению их санитарного состояния и к изменению микроклимата в отдельных районах.

Основными источниками теплового загрязнения водоемов являются конденсаторы турбин. Из них отводится приблизительно от 1/2 до 2/3 всего количества теплоты, получаемой от сгорания органического топлива, что эквивалентно 35–40% энергии, используемого топлива.

Считается, что для конденсации пара на каждую турбину типа К-300-240 требуется до 10 м 3 /с воды, а для турбины К-800-240 – уже 22 м 3 /с, и все это количество воды покидает конденсатор с температурой не менее 30 °С.

Следует, однако, отметить, что при использовании оборотной системы водоснабжения повышение температуры в водохранилищах-охладителях ТЭС в определенных условиях может оказаться для народного хозяйства экономически вполне оправданным. Известно, например, что в средней полосе России такие водохранилища можно заселять теплолюбивыми растительноядными рыбами, обеспечивающими питательную продукцию 25–30 ц/га в год. Подогретая вода может использоваться также для обогрева теплиц. Использование отходов теплоты позволяет в этом случае создавать так называемые энергобиологические комплексы, над развитием и совершенствованием которых работает широкий круг ученых.

3. Атомные электростанции и окружающая среда

Атомная энергетика после периода быстрого роста в 70-е годы и начале 80-х годов ХХ века испытывает жесточайший кризис, чему причиной всплеск социальных противоречий, экологическая и политическая оппозиция во многих странах, технические трудности обеспечения возросших требований безопасности АЭС и проблема захоронения радиоактивных отходов, перерасход затрат на строительство и сильный рост себестоимости электроэнергии, произведенной на АЭС. Тем не менее, у атомной энергетики есть хорошее будущее, причем, по-видимому, путь к успеху лежит в реализации новых физических принципов. Эффективное развитие атомной энергетики за счет совершенствования традиционных подходов, основа которых заложена еще в 40-е и 50-е годы ХХ века, значительно менее вероятно. В последнее десятилетие количество работающих в мире реакторов и их установленная мощность растут чрезвычайно медленно (на 1 января 1996 г. число их составило 437 при мощности 344 ГВт против 426 и 318 ГВт на 1 января 1990 г.). При всем при том, в мире есть большое количество стран, энергетика которых в значительной мере основана на атомной энергии (Литва, Франция, Бельгия, Швеция, Болгария, Словакия, Венгрия имеют долю «атомного» электропотребления свыше 40 %).

Теплота сгорания 1 кг ядерного горючего в 3,0·10 6 раз больше, чем 1 кг условного органического топлива. ТЭС мощностью в 1 млн кВт потребляет в течение года более 1500 эшелонов угля, в то время как для АЭС при тех же условиях достаточно всего несколько вагонов ядерного топлива. Отсюда следует, что материальные отходы производства электроэнергии на АЭС на несколько порядков ниже, чем на ТЭС. В этом состоит одно из основных экологических преимуществ АЭС перед ТЭС.

Вместе с тем атомные электростанции имеют значительно большие сбросы тепла в водные бассейны, чем ТЭС, при одинаковых параметрах, что связано с повышением интенсивности теплового загрязнения водоемов. Считается, что потребление охлаждающей воды на АЭС примерно в 3 раза больше, чем на современных ТЭС. Однако более высокий КПД АЭС с реакторами на быстрых нейтронах (40–42%), чем у АЭС на тепловых нейтронах (32–34%), позволяет примерно на 1/3 сократить сброс теплоты в окружающую среду по сравнению со сбросом теплоты АЭС с водоохлаждаемыми реакторами.

Проблема радиационной безопасности эксплуатации АЭС является многоплановой и достаточно сложной. Главным источником возникновения опасной радиации является атомное горючее. Изоляция его от окружающей среды должна быть достаточно надежной. С этой целью сначала ядерное топливо формируется в брикеты, материал матрицы которых удерживает большую часть продуктов деления радиоактивных веществ.

Брикеты, в свою очередь, размещаются в тепловыделяющих элементах (твэлах), выполненных в виде герметически запаянных трубок из циркониевого сплава. Если все же произойдет хотя бы незначительная утечка продуктов деления из твэлов, вследствие возникших в них неисправностей (что само по себе мало вероятно), то они попадут в охлаждающий реактор реагент, циркулирующий по замкнутому контуру. Реактор способен выдерживать огромные давления. Но и это не все: реактор окружает мощная железобетонная оболочка, способная выдержать самые сильные когда-либо отмечавшиеся ураганы и землетрясения и даже прямое попадание потерпевшего аварию самолета. Наконец, для полной безопасности населения окружающего района осуществляется защита расстоянием, т. е. АЭС размещается на некотором удалении от жилых массивов.

Другим источником радиационной опасности являются различные радиоактивные отходы, неизбежно возникающие во время эксплуатации реакторов. Различают три вида отходов: газообразные, жидкие и твердые.

Загрязнение атмосферы газообразными (летучими) радиоактивными отходами через вентиляционную трубу ничтожно. В худшем случае оно не превышает нескольких процентов предельно допустимого уровня, установленного нашим законодательством и тем более «Международной комиссией по радиологической защите», требования которой значительно ниже. Это достигается путем использования высокоэффективной системы очистки газов, имеющейся на каждой АЭС.

Таким образом, с точки зрения сохранения чистоты атмосферы АЭС оказались несравненно благоприятнее ТЭС.

Вода, загрязненная низкоактивными радиоактивными веществами, дезактивируется и используется повторно, и лишь незначительное количество ее сливается в бытовую канализационную систему, при этом загрязнение от нее не превышает максимальных уровней, допустимых для питьевой воды.

Несколько сложнее решается проблема с очисткой и хранением высокоактивных жидких и твердых отходов. Трудность здесь состоит в том, что такие радиоактивные отходы не могут быть искусственно нейтрализованы. Естественный радиоактивный распад, который для некоторых из них длится сотни лет, является пока что единственным средством устранения их радиоактивности.

Вследствие этого высокоактивные жидкие отходы должны быть надежно захоронены в специально для этого приспособленных камерах. Предварительно их подвергают «отвердению» путем нагрева и выпаривания, что позволяет значительно (в сотни раз) уменьшить их объем.

Твердыми отходами АЭС являются детали демонтированного оборудования, инструмент, отработавшие фильтры для очистки воздуха, спецодежда, мусор. Эти отходы после сжигания и прессования для уменьшения габаритов помещаются в металлические контейнеры и также захораниваются в подземных камерах (траншеях).

Основными радиоактивными отходами АЭС являются отработавшие твэлы, которые содержат уран и продукты деления, в основном плутоний, остающийся опасным в течение сотен лет. Они также подлежат захоронению в специальных подземных камерах. Чтобы предотвратить растекание радиоактивных отходов при возможных разрушениях подземных камер, их предварительно превращают в твердую стеклообразную массу. Создаются также специальные установки для переработки радиоактивных отходов.

Некоторые страны, в частности Англия и отчасти США, производят захоронение отходов в специальных контейнерах, опускаемых на дно морей и океанов. Такой способ захоронения отводов таит в себе громадную потенциальную опасность радиационного загрязнения морей в случае разрушения контейнеров под воздействием коррозии.

Чтобы полностью устранить радиационную опасность АЭС, их ядерные реакторы снабжаются практически безотказной аварийной защитой, резервными системами охлаждения, срабатывающими при внезапном повышении температуры, устройствами, удерживающими осколки радиоактивных веществ, запасными резервуарами на случай выброса радиоактивных газов. Все это при надлежащем уровне надежности оборудования и его эксплуатации приводит к тому, что атомные электростанции практически не оказывают загрязняющего воздействия на окружающую среду.

Однако потенциальная опасность выброса в атмосферу значительного количества радиоактивных продуктов все же имеется. Она реально может возникнуть при аварийном нарушении герметичности защитных барьеров, которые воздвигаются на пути возможного распространения радиоактивных веществ. Радиационная безопасность АЭС для окружающей среды в этом случае определяется надежностью указанных защитных барьеров, а также эффективностью работы технологических схем, осуществляющих последующее поглощение и удаление радиоактивных веществ, проникающих через указанные барьеры.

На рис. 2 изображена общая схема воздействий АЭС на окружающую среду.

Рис. 2. Влияние АЭС на окружающую среду

1 – реактор; 2 – парогенератор; 3 – турбина; 4 – генератор; 5 – подстанция; 6 – конденсатор; 7 – конденсатный насос; 8 – регенеративный водоподогреватель; 9 – питательный насос; 10, 12 – циркуляционные насосы; 11 – градирня; 13 – линия электропередачи; 14 – потребители электроэнергии

Нами рассмотрены некоторые вопросы радиационной безопасности только для АЭС, работающих на тепловых нейтронах. Для АЭС на быстрых нейтронах возникают дополнительные проблемы обеспечения радиационной безопасности, связанные, в частности, с необходимостью захоронения таких нарабатываемых изотопов, как америций и кюрий.

4. Гидроэлектростанции и окружающая среда

Гидроэнергетика, монотонно развивавшаяся до последнего времени, также переживает трудный период. Одна из наиболее серьезных проблем связана с затоплением земель при строительстве ГЭС. В развитых странах, где значительная часть гидроэнергетического потенциала уже освоена (в Северной Америке – более 60%, в Европе – более 40%), практически нет подходящих для строительства ГЭС мест.

Проектирование и строительство крупных ГЭС ведется преимущественно в развивающихся странах, а наиболее крупные программы реализуются в Бразилии и Китае. Однако использование оставшегося достаточно большого гидроэнергетического потенциала в развивающихся странах ограничивается острой нехваткой инвестиционного капитала в связи с ростом внешнего долга и экологическими проблемами гидроэнергетики. По-видимому, трудно ожидать в будущем заметного увеличения роли гидроэнергии в мировом энергобалансе, хотя для целого ряда стран, прежде всего развивающихся, именно гидроэнергетика может дать существенный импульс экономике.

Технологический процесс производства гидроэнергии экологически безвреден. При нормальном состоянии оборудования ГЭС отсутствуют какие-либо вредные выбросы в окружающую среду. Но создание крупных водохранилищ ГЭС на равнинных реках (Россия – единственная страна мира, где осуществлено массовое строительство мощных ГЭС на таких реках) практически всегда влечет за собой ряд изменений в природных условиях и объектах народного хозяйства затрагиваемой территории.

Положительное значение водохранилищ как регуляторов стока распространяется на территории значительно большие, чем те, на которых оно располагается. Так, энергетический эффект регулирования стока проявляется не только в тех энергосистемах, в которых работает данная ГЭС, но при достаточно высокой ее мощности и в их объединениях. Орошение земель и защита плодородных угодий от наводнений, осуществляемые с помощью водохранилищ ГЭС, охватывают площади, в ряде случаев значительно превышающие площади затоплений.

Орошение земель, осуществляемое с помощью Волгоградского водохранилища, охватывает огромную территорию Заволжья и Прикаспийской низменности. Однако нередко естественные неуправляемые процессы, происходящие в водохранилищах, приводят к неблагоприятным последствиям иногда достаточно широкого плана.

Различают прямое и косвенное воздействия водохранилищ на окружающую природу. Прямое воздействие проявляется прежде всего в постоянном и временном затоплении и подтоплении земель. Большая часть этих земель относится к высокопродуктивным сельскохозяйственным и лесным угодиям. Так, доля сельскохозяйственных земель, затопленных водохранилищами Волжско-Камского каскада ГЭС, составляет 48% всей затопленной территории, причем некоторые из них расположены в пойменной зоне, отличающейся высоким плодородием. Около 38% затопленных земель составили леса и кустарники. В пустынной и полупустынной зонах 3/4 всех затопленных земель приходится на пастбища.

Удельная площадь затопления, т. е. отношение площади зеркала водохранилища ГЭС к ее установленной мощности, колеблется в очень широких пределах. Так, для Цимлянского водохранилища ее значение составляет 16,4, а для Нурекского – всего 0,05. В общем случае энергетическая эффективность затопления будет выше там, где указанный показатель ниже, т.е. при отсутствии специальных мероприятий по уменьшению акватории водохранилищ, – в горной местности.

Косвенные воздействия водохранилищ на окружающую среду изучены не так полно, как прямые, но некоторые формы их проявления очевидны и сейчас. Так обстоит дело, например, с изменением климата, проявляющимся в зоне влияния водохранилища, в повышении влажности воздуха и образовании довольно частых туманов, уменьшении облачности в дневное время над акваторией и уменьшении там среднегодовых сумм осадков, изменении направления и скорости ветра, уменьшении амплитуды колебания температуры воздуха в течение суток и года.

Опыт эксплуатации отечественных водохранилищ показывает также, что количество осадков в прибрежной зоне заметно увеличивается, а среднегодовая температура воздуха в зоне крупных южных водохранилищ несколько снижается. Наблюдаются изменения и других метеорологических показателей.

Изменение климата вместе с подтоплением и переформированием берегов иногда ведет к ухудшению состояния прибрежной древесной растительности и даже ее гибели.

К косвенным воздействиям водохранилищ следует отнести также появление территорий, которые становятся менее пригодными для использования в хозяйственных целях (например, острова в верхнем бьефе, осуходоленные поймы в нижнем бьефе).

Нельзя также не отметить влияния создания водохранилищ на рыбное хозяйство. Здесь следует указать два обстоятельства. С одной стороны, сооружение плотины ГЭС препятствует проходу рыбы к местам нерестилищ, а с другой, требования рыбного хозяйства к режиму стока полностью противоречат задачам регулирования стока, т. е. той цели, для которой и создается водохранилище.

Конечно, было бы неправильно утверждать, что все прямые и косвенные воздействия водохранилищ ГЭС на окружающую среду (а их гораздо больше, чем здесь рассмотрено) имеют только негативную сторону. Обычно каждое из них и их совокупность обладают комплексом как отрицательных, так и положительных свойств.

Общая картина влияния ГЭС на окружающую среду приведена на рис. 3.

Рис. 3. Влияние ГЭС на окружающую среду

1 – водохранилище; 2 – плотина; 3 – здание ГЭС; 4 – генератор; 5 – турбина; 6 – повышающий трансформатор; 7 – подстанция; 8 – линия электропередачи; 9 – потребители электроэнергии

Другие источники первичного электричества (солнечная, ветровая, геотермальная энергия) находятся лишь на пути к промышленному освоению, и в настоящее время их суммарный вклад в мировой энергобаланс измеряется долями процента. Такое положение вызывается причинами экономического характера. Однако по мере технического прогресса появления новых технологических разработок и перехода к массовому производству оборудования, себестоимость электроэнергии, произведенной на базе этих возобновляемых источников энергии, снижается, приближаясь к уровню, характерному для традиционной энергетики.

Большое количество воды используется ТЭС в различных тепло-обменных устройствах для конденсации отработавшего пара, водо-, масло-, газо- и воздухоохлаждения. Для этих целей вода забирается из какого-либо поверхностного источника (озера, водохранилища, реки) и при прямоточной схеме после использования в указанных устройствах возвращается обратно в те же источники. Эта вода вносит в используемый водоем большое количество теплоты и создает так называемое тепловое загрязнение его. Такого рода загрязнение воздействует на биологические и химические процессы, определяющие жизнедеятельность растительных и животных организмов, населяющих естественные водоемы, и нередко приводит к их гибели, интенсивному испарению воды с поверхностей водоемов, изменению гидрологических характеристик стока, повышению растворимости пород в ложах водоемов, ухудшению их санитарного состояния и к изменению микроклимата в отдельных районах.

Основными источниками теплового загрязнения водоемов являются конденсаторы турбин. Из них отводится приблизительно от половины до двух третей всего количества теплоты, получаемой от сгорания органического топлива, что эквивалентно 35–40% энергии, используемого топлива.

Считается, что для конденсации пара на каждую турбину типа К-300-240 требуется до 10 м /с воды, а для турбины К-800-240 – уже 22 м /с, и все это количество воды покидает конденсатор с температурой не менее 30 °С.

Агрессивность и вредное влияние на природу теплой и горячей воды значительно усиливаются одновременным ее отравлением сбросами загрязненных стоков от других источников.

Следует, однако, отметить, что при использовании оборотной системы водоснабжения повышение температуры в водохранилищах-охладителях ТЭС в определенных условиях может оказаться для народного хозяйства экономически вполне оправданным. Известно, например, что в средней полосе России такие водохранилища можно заселять теплолюбивыми растительноядными рыбами, обеспечивающими питательную продукцию 25–30 ц/га в год. Подогретая вода может использоваться также для обогрева теплиц и т. п. Использование отходов теплоты позволяет в этом случае создавать так называемые энергобиологические комплексы, над развитием и совершенствованием которых работает широкий круг ученых.

Вместе с тепловым загрязнением водоемов наблюдается аналогичное загрязнение и воздушного бассейна. Только примерно 30% потенциальной энергии топлива превращается сегодня на ТЭС в электроэнергию, а 70% ее рассеивается в окружающей среде, из которых 10% приходится на горячие газы, выбрасываемые через дымовые трубы.

С каждым годом проблемы энергосбережения и экологии становятся все актуальнее для современного общества. Природные ресурсы постоянно дорожают, растут цены на электроэнергию и тепло, а экология на нашей планете лишь ухудшается. Казалось бы - где связь между энергосбережением и экологий? Но на самом деле сегодня эта связь как нельзя лучше прослеживается. Эксперты отмечают, что тесная взаимосвязь между энергосбережением и экологией существует: если в промышленных масштабах такую связь легко проследить, то на бытовом уровне имеет место косвенное взаимодействие.

В современном мире активное использование энергосберегающих технологий приводит к значительному сокращению затрат на электроэнергию, что в свою очередь уменьшает негативное воздействие на окружающую нас среду. Неудивительно, что современные люди, желающие жить в хорошей экологической обстановке, все чаще начинают задумываться и ценить экологически чистые материалы, чистый воздух и воду, натуральные продукты питания и здоровую экологию вокруг себя. Человек научился понимать, что от того, каким воздухом он дышит и какую воду он пьёт, зависит его здоровье и благополучие.

Каждый человек, пользуясь ежедневно современными благами цивилизации, оставляет свой энергетический след на планете. Ведь практически все современные блага цивилизации потребляют в том или ином виде энергию. Одни только тепловые электростанции, которые вырабатывают электроэнергию для наших электроприборов, являются основными загрязнителями окружающей среды и наносят огромнейший ущерб нашей природе и экологии. Поэтому, рациональное использование электрической и тепловой энергии способно снизить пагубное воздействие на окружающую среду. А хороший проект электроснабжения , выполненный специалистами, позволит оптимизировать электрическую составляющую в доме, квартире или офисе.

Таким образом, энергосбережение - это ни что иное, как забота об экологии нашей планеты и о сохранности своего кошелька. Ведь с каждым годом счета за электроэнергию растут, "съедая" не малую часть семейного или корпоративного бюджета. Переход на экологические световые решения в своей квартире, доме или офисе позволят не только улучшить качество освещения, но и снизить выбросы СО2 при производстве такой энергии.

Сегодня существует множество способов улучшить энергосбережение, но чтобы эффект был заметен и ощутим следует подойти к этому делу довольно ответственно. Лишь замена обычных ламп накаливания на энергосберегающие не решит этот вопрос. Качественное проектирование электрических сетей играет немаловажную роль в этом вопросе. Ведь проектирование электроснабжения позволит сэкономить время и деньги для будущих проектов по энергосбережению.

Конечно, энергоэффективность каждого отдельно взятого дома находится в руках его жильцов и собственников. Использование современной высокотехнологичной техники в совокупности с изменением наших расточительных привычек позволит экономить до 40% электроэнергии. А электропроект , составленный опытными специалистами, даст рекомендации по правильному и эффективному использованию электрооборудования в помещении, что позволит еще больше увеличить процент экономии электричества.

Внедрение энергоэффективных технологий снизит потребление электро- и теплоэнергии, что в конечном позволит теплоэлектростанциям вырабатывать меньшие объемы энергии, сжигать меньше природного газа. Таким образом, мы уменьшим выброс вредных веществ в атмосферу. Такой общий подход к проблеме взаимодействия энергосбережения и экологии поможет сделать окружающую нас среду более чистой и комфортной. Ведь экология планеты - это наше общее дело!

Парадигма развития мировой экономики в 21 веке.

Проблема энергии - наиболее актуальная, ключевая проблема будущего развития и мировой стабильности. Мировое потребление энергии постоянно растет, опережая темпы роста народонаселения. Только за 1975-2005 гг. было использовано столько же энергоресурсов, сколько за все предшествующее время цивилизации. С 1960 г. по 2006 г. в составе источников потребления энергии возросла доля наиболее эффективных видов ископаемого органического топлива, которое дает примерно 80% мировой энергии. 70% его составляют нефть и газ. Экспоненциальный рост потребления энергии создает экологические проблемы, представляющие реальные угрозы выживанию человечества. Модель количественного развития энергетики за счет невозобновляемых ресурсов к настоящему времени исчерпала себя. Выход видится в переходе в 21 веке к новой парадигме мирового развития с приоритетом энергосбережения, инновационных технологий и экологии. Все возобновляемые источники энергии - солнечная, гидроэнергия, биомасса, энергия ветра - существуют благодаря деятельности солнца.

Только геотермальная энергия представляет собой тепло Земли. Суммарные запасы традиционных видов ископаемого топлива, а также мировое потребление энергии составляют ничтожную часть солнечной энергии, попадающей на Землю в год. Звеном, связующим все источники энергии и позволяющим наиболее эффективно ее использовать, служит энергосбережение - приоритетное направление в развитии мирового сообщества.

Энергосбережение - важная составляющая более общей проблемы рационального использования всех видов ресурсов, используемых человечеством. Мощным импульсом к осознанию приоритетной роли энергосбережения как ключевого звена комплексной глобальной проблемы. «Энергетика - экология - экономика - энергосбережение» (проблема «4Э») явился мировой нефтяной (энергетический) кризис 70-х гг. В последние десятилетия динамика потребления топливно-энергетических ресурсов (ТЭР) в мире отставала от темпов роста экономики, что свидетельствует о возрастающей роли энергосбережения как фактора экономического развития. Оно охватывает новые страны и сферы деятельности и одновременно использует новые эффективные научно-технические достижения и инструменты воздействия на поведение потребителей.

Потенциал энергосбережения - возможная экономия ТЭР за счет использования различных факторов по сравнению с анализируемым (существующим) уровнем. Различают:

Теоретический потенциал - возможная экономия при условии полного исключения потерь энергии на всех стадиях выполняемой общественной функции.

Технический потенциал - возможная при данном уровне развития техники экономия в планируемом периоде от внедрения мероприятия

Экономический потенциал - часть технического потенциала, могущая быть реализованной в плановом периоде за счет выделяемых инвестиций. Это - наиболее динамичный во времени показатель, зависящий главным образом от уровня цен и тарифов.

Основные направления энергосбережения. Оценки потенциала на среднесрочную перспективу.

По имеющимся официальным оценкам потенциал энергосбережения «за счет технологических нововведений и аудита» по основным секторам-потребителям оценивается следующими величинами, в процентах к существующему уровню потребления ТЭР:

Промышленность 20-25,

Транспорт 25-35,

Торговля и обслуживание 25-35,

Жилье 30-35,

В электроэнергетике современные технологии, при доведении доли газа в составе топлива до 50%, позволяют за счет повышения кпд электростанций снизить удельный расход топлива на 21-23%. За счет расширения конгенерации (совместной выработки электрической и тепловой энергии) потенциал составит до 25% существующих мощностей электростанций, из них 2/3 в промышленности.

Внедрение современных накопителей энергии у крупных потребителей позволит снизить пиковые нагрузки электростанций, что равноценно вводу дополнительно 500-1000 МВт мощностей.

В транспортном секторе примерно 80% потребляемого жидкого топлива приходится на наземный транспорт, из них, лишь 1% - на железнодорожный. В пассажирских перевозках перенаправление каждых 10% потока пассажиров с частного на общественный транспорт позволяет снизить расход энергии примерно на 15%, при этом парк маршрутных автобусов потребуется увеличить лишь на 1 %. Важную роль играют развитие транспортной инфраструктуры, а также стимулирование использования экономичных и экологически чистых видов автотранспорта. Дальнейшее расширение использование современных средств информатики и телемеханики может существенно снизить потребность в перевозках пассажиров.

На освещение расходуется, по разным оценкам, 20-30% электроэнергии. Первоочередное радикальное мероприятие здесь - полная замена ламп накаливания высокочастотными люминесцентными, а в перспективе - использование источников света на основе светодиодов. Теоретический потенциал энергосбережения при полном внедрении светодиодов составляет до 3% экономии электроэнергии в стране. Существенные резервы экономии заключены в рациональной организации освещения. В том числе, в оптимальном размещении источников света по отношению к рабочей зоне.

Замена физически и морально устаревшей электробытовой техники и средств коммуникации современными изделиями, экономящими 20-40% электроэнергии, позволит снизить потребление электроэнергии в стране на 7-8%.

Нетрадиционные и возобновляемые источники энергии. Бюджетное финансирование «зеленого» строительства» - комплексного направления повышения эффективности использования энергии в зданиях (повышение теплостойкости, оснащение установками производства возобновляемой энергии) может сэкономить до 12% общего потребления энергии в стране.

На процессы низкотемпературного нагрева в производственном секторе и торговле приходится до 30% потребляемой ими энергии, или 6% всего потребления конечной энергии в стране. Перспективно использование для этой цели солнечных коллекторов.

С учетом реальных возможностей централизованного финансирования, МНИ планирует довести к 2020 г. долю возобновляемых источников энергии (преимущественно, солнечной и ветровой) до 10% общего производства электроэнергии в стране. Согласно оптимистичным оценкам, этот потенциал составляет 20% и более.

Использование отходов позволяет: получать тепловую и/или электрическую энергию (из отходов древесины, животноводства, канализационных стоков, и др.), а в части негорючих материалов - возвращать в технологический цикл ценное сырье. В обоих случаях достигается снижение затрат сырья и энергии на производство изделий. В 2006 г. в стране общий объем только муниципальных отходов составил 4,2 млн. т, утилизировано лишь 1,2 млн. т твердых отходов. В 2006 г. из отходов было получено всего лишь 0,04 % общего потребления ТЭР. Лучшие мировые показатели: в Дании 13%, в Финляндии 20,3%.

Биотопливо для автотранспорта. Двигатели внутреннего сгорания, работающие на спирту, на 20% эффективнее бензиновых, а созданные специально для работы на спирту, могут быть эффективнее на 30%. Они имеют также многочисленные экологические преимущества. Для условий Израиля наиболее приемлемым представляется выращивание водорослей и получение из них спирта. Первые удачные опыты по выращиванию водорослей, которые превращают в биотопливо, проводятся в киббуце Ктора в Негеве

Изменение поведения потребителей. В США за 1972-84гг. этот фактор обеспечил до трети общего энергосбережения, а в быту - примерно 80%.

Многочисленные примеры бесцельной растраты всех видов энергии в нашей стране - у всех на виду, но устранение этих потерь, особенно в быту, сфере торговли и обслуживания происходит крайне медленно.

Таким образом, потенциал энергосбережения в нашей стране составляет не менее 30-35% от нынешнего уровня потребления ТЭР.

Пути ускорения реализации потенциала энергосбережения

Мировой опыт свидетельствует: радикальное повышение эффективности использования ТЭР достигается на основе последовательной и всесторонней приоритетной государственной политики управления энергопотреблением, охватывающей единым планированием и механизмами системного воздействия все уровни хозяйства - предприятия (учреждения, домохозяйства) - отрасли; регионы (муниципалитеты) - макроуровень.

Осуществляемые в нашей стран в последние годы отдельные важные общегосударственные меры (такие, как принятие Закона о чистом воздухе, стимулирование децентрализованного производства электроэнергии, расширение использования принципа Performance contracting для выявления и реализации резервов энергосбережения на предприятиях, краткосрочные пропагандистские кампании, и др.) такую системную политику заменить не могут.

Спустя 20 лет после принятия Закона об энергоресурсах (1989 г.) в нашей стране не решены ключевые вопросы эффективного управления потреблением энергии, воздействия на поведение потребителей, создания благоприятного правового и экономического климата:

Отсутствует полноценный Закон об энергосбережении; многие важные стандарты и нормативы не носят обязательного характера;

Не создан внебюджетный фонд энергосбережения,

Не разработаны долгосрочные комплексные общегосударственные, отраслевые, местные программы, а также механизмы согласования интересов участников рынка энергии;

Отсутствует система широкой информированности потребителей о возможностях и эффективности энергосбережения и его воздействия на экологию страны и семейный бюджет;

Недостаточно развиты комплексные энергоэкономические исследования и энергетическая статистика.

5 лет назад группой ученых-разработчиков проекта Генплана развития энергохозяйства на период до 2925 г. была рекомендована давно назревшая радикальная институционная мера - создание самоокупаемого (в течение двух лет) общегосударственного Управления по энергосбережению, наделенного необходимыми властными полномочиями и финансовыми ресурсами, призванного руководить в полном объеме весь комплекс таких работ. В 2008 г. предложение было поддержано руководством МНИ, но в бюджете 2009-2010 гг. соответствующие затраты не предусмотрены. По нашему мнению, это свидетельствует о низком уровне понимания актуальности проблемы энергосбережения субъектами рынка энергосбережения, принимающими соответствующие решения на высшем уровне управления страной.

Остановимся на некоторых первоочередных шагах государственной политики энергосбережения и рационального природопользования.

Выявление и реализация общегосударственных резервов, разработка научно обоснованных долгосрочных программ развития энергохозяйства на основе его эффективности сдерживается недостаточной развитостью энергетической статистики и комплексных энергоэкономических исследований.

Здесь выделяется вопрос оптимальных темпов и уровня электрификации страны. Эти показатели в нашей стране - одни из самых высоких среди стран, не имеющих собственных ресурсов возобновляемой энергии. Опережающее развитие электроэнергетики на протяжении четверти века (примерно в полтора раза быстрее, чем темпы роста экономики) обусловило примерно половину прироста потребления первичной энергии и способствовало значительному росту объема вредных выбросов, а также потерям первичной энергии на преобразование. В 2006 г. уровень электрификации (доля электроэнергии в составе конечного потребления ТЭР) в Израиле составил 30,6%, потери первичной энергии - 39,9%; в Италии соответственно - 18,4 и 21.5%. Сравнение со странами, близкими по климатическим условиям, показывает, что исключительно этим фактором сложившееся положение не может быть объяснено. Представляется, что важным фактором, стимулирующим преобладание электроэнергии во всех сферах потребления энергии (например, в торговле и общественном обслуживании - 100%, для сравнения, в Италии 45,2%; в том числе, в медучреждениях соответственно 100 и 18%) являются тарифы, не отражающие общественно необходимые затраты на производство различных видов энергии. Тариф на электроэнергию в нашей стране в 2,4 раза ниже, чем в Италии; доля электроэнергии в общих затратах на содержание жилья почти вдвое ниже, чем на телефон и другие средства информации. Такое положение искусственно занижает экономический потенциал энергосбережения и альтернативных источников энергии и тормозит их использование. Вопрос явно заслуживает углубленной проработки и решения.

В Законе об энергосбережении, по нашему мнению, должно быть отражено принципиальное положение о приоритете энергосбережения при решении любых экономических вопросов в стране. Вопросы энергопотребления затрагивают практически все сферы экономики, и принятие такого закона, а также долгосрочных планов энергосбережения могло бы явиться основой системы долгосрочного планирования в стране взамен существующей преимущественной практики текущего планирования на основе годовых бюджетов.

Необходимо устранить имеющиеся преграды на пути энергосбережения: необоснованно высокие сборы за регистрацию счетчиков, получение разрешений на изменение электрической схемы, на перестройку помещений с целью снижения потерь энергии, и т.п.

Создание у коллективов учреждений бюджетного финансирования мотивации к энергосбережению возможно при реализации принципиальной идеи законопроекта «Об экономии энергии в общественных организациях» (принят Кнессетом в первом чтении в 2004 г.): создание фонда энергосбережения и одновременно установление обязательных годовых заданий по экономии энергии.

Совершенствование механизма экономического стимулирования должно дополняться мерами воспитания потребителей, т.е. практически всего населения, понимаемыми в широком смысле, как это имеет место в большинстве передовых стран. Необходима цельная система, которая должна гармонично включать в себя как обучение персонала предприятий и учреждений энергосберегающим технологиям, так и обучение населения, начиная с дошкольных учреждений, общим положениям экономии энергии в повседневной жизни.

Не пора ли начать внедрять новые технологии вместо строительства и реставрации угольных, мазутных и атомных теплоэлектростанций, которые низводят нас не только экономически, но и экологически? Разве технико-экономические обоснования использования отопительных установок “ЮСМАР” вместо угольных котельных не убеждают нас в использовании новых и чистых методов производства тепловой и электрической энергии!

Давайте посчитаем вместе! Сегодня в каждом районе своего города Вы можете наблюдать построенные среди жилых массивов отдельно стоящие кирпичные строения - трансформаторные подстанции площадью 50-80 кв.м. Эти будки, предназначены для размещения в них трансформаторов, преобразующих, подводимое к ним, высокое напряжение в бытовое 220/380V. При этом такая подстанция, вмещающая в себе два трансформатора по 400 кВА, питает электричеством десятки жилых домов. Если вместо обоих трансформаторов в ней разместить одну квантовую теплоэлектростанцию той же мощности КТЭС-5 (800 кВт) размером всего 2600x2700x2800мм, то она кроме электрообеспечения того же района будет давать в дома 260 кВт тепла (что соответствует 223600 кКал/ч.). При этом не потреблять ни электричества, ни угля, ни мазута, никак не загрязняя окружающей среды. Производимая ей за год электрическая энергия по сегодняшним ценам (0,28 руб./кВт*ч.) будет стоить 1 962 240 руб., а тепловая за 8 месяцев отопительного сезона (по 300 руб./ГКал.) - 386 380 руб. А значит вся электростанция стоимостью 180 000 $ = 5 400 000 руб. с затратами на установку - 10%, окупится за два года семь месяцев. Если же для более полного обеспечения теплом районов города использовать более мощные КТЭС-7 (2000 кВт электрической и 900 кВт тепловой энергии), имеющие те же габариты, объединенные в единую энергосистему города для резервирования друг друга, используя их тепло на горячее водоснабжение, а для отопления в зимний период использовать в домах вихревые теплоустановки, то те же расчеты дают окупаемость таких электростанций стоимостью 350 000 $ за 350 000 * 1.1 * 30 / (2000*24*365*0.28 +0.9*0.86*24*365*300) = 1.66, т.е. за один год и восемь месяцев. Учитывая, что затраты на обслуживание КТЭС не превышают затрат на обслуживание трансформаторных подстанций и теплосетей города, а средний срок службы ее до капитального ремонта - 15 лет, получаем удешевление потребляемой нами с Вами энергии в несколько раз!!! При этом сразу отпадает ряд вопросов, касающихся потерь в километровых теплотрассах, загрязнении окружающей среды и, главное, ежегодном закупе топлива!

Не пора ли руководителям городов, областей и республик России прислушаться к голосу Разума о решении проблем в коммунальном хозяйстве?!!

Энергосбережение и экология - это жизненно важный фактор во всём мире. Обусловлено это существенным дефицитом электрической энергии.

Ежегодно энергосбережение и экология становится актуальным для нашего мира сегодня.

Цена на природные запасы всё время растёт, а их количество только лишь уменьшается. Растут цены на потребляемую нами электрическую энергию, а экологическая обстановка в мире становится хуже.

Общее у энергосбережения и экологии

Многие могут задать совсем логичный вопрос: какое взаимодействие может быть между экологией и электроэнергией? В нынешнее время она видна, как никогда лучше. И многие эксперты утверждаю, что связь есть. Если в промышленности это заметно и очевидно, то в быту прослеживается второстепенная взаимосвязь.

В нынешнее время энергосберегающие технологии применяются на много чаще, что позволяет существенно уменьшить расходы на электрическую энергию. Это минимизирует вредное влияние на природу, и это совсем не удивительно, – ведь каждый из нас стремится жить в прекрасном и чистом мире. Поэтому часто возникают мысли о том, что необходимо ценить чистую воду и воздух, натуральные продукты, а также здоровую окружающую нас природу.

Сегодня человечество наконец-то научилось понимать, что от качества воды и воздуха напрямую зависит его здоровье в будущем. В связи с этим энергосбережение и экология в нынешнее время стоит на первом месте.

Каждый из нас ежедневно использует все находки общества, при этом, оставляя свой «экологический след» от этого. Все они основаны на потреблении энергии.

Тепловые электростанции, вырабатывающие электроэнергию для всего нашего электрического оборудования, которым мы пользуемся каждый день, являются первыми в списке самых загрязняющих производств. Своей работой они оказывают невозвратимый ущерб экологии. В связи с этим использовать тепловую и электрическую энергию следует целесообразно. Только так можно минимизировать ущерб природе.

А если проект на электроснабжение будет выполнен высококвалифицированными мастерами, то это даст возможность оптимизировать электрическую составляющую вашего производства, офиса, квартиры, либо же дома.

Следовательно, энергосбережение и экология являются ничем иным, как заботой о планете, а также сохранность наших финансов.

Платёжки за пользование электричеством ежемесячно «съедают» весомую часть семейного либо производственного бюджета. Поэтому рациональнее всего переходить на современные экологические световые решения. Это позволит не только лишь его улучшить, но и снизить выбросы углекислого газа при его изготовлении.

Основные загрязнители окружающей среды в России

Загрязнителями окружающей среды, бесспорно, на первом месте являются предприятия теплоэнергетического комплекса:

  • 27 процентов загрязнённых стоков;

  • 48% выбросов вредных веществ;

  • 70 процентов объёма парниковых газов;

  • 30% вредных отходов;

  • 72 процента выделения оксида азота.

Только лишь с помощью повсеместного энергосбережения нам удастся достичь экономического и экологического эффекта, при этом, никак не ущемляя интересы самого общества.

Как энергосбережение сделать лучше?

Благодаря стремительному развитию технологического прогресса, сегодня мы видим много способов экономии, благодаря которым экономический эффект становится заметным и ощутимым. Ведь замена ламп накаливания в своём доме или на производстве на светодиодное освещение не способна полностью решить эту проблему.

На предприятиях для энергосбережения необходимо выполнить качественное проектирование всей сети электричества. Это даст возможность уменьшить время и деньги для энергосберегающих проектов в будущем.

Энергосбережение каждого дома зависит только лишь от его владельца. Но эксплуатация высокотехнологичных современных приборов вместе с изменением наших привычек позволит нам сберечь до 40 процентов электрической энергии.

Также, грамотно составленный электронный проект даст возможность эффективно использовать всё электрооборудование. А это, в свою очередь, только лишь увеличит экономию.

При помощи энергетически эффективных современных технологий удастся снизить потребление электричества и тепловой энергии. Это приведёт к тому, что электростанции будут вырабатывать меньший объём энергии, тем самым сжигая расход газа. Это позволит уменьшить загрязнение атмосферы. Такое отношение к проблеме энергосбережения и экологии позволит сделать природу на много чище. Жить станет намного комфортнее и приятнее.

Какая выгода от энергосберегающих и экологосберегающих технологий?

Подводя итоги, можно сказать, что все мероприятия, направленные на энергосбережение поспособствуют следующему:

  • сокращению расходов за электрическую энергию;

  • экономическому расходу природных ресурсов (газа, нефти и угля);

  • уменьшению вредных выбросов в атмосферу;

  • снижению вреда нашему здоровью.

Использование современных энергоэффективных машин, оборудования, бытовых устройств, нестандартных источников энергии, новые виды топлива, активные энергосберегающие мероприятия и многое другое – всё это поможет заменить энергоресурсы, добыча и переработка которых очень сильно вредят окружающей среде и каждому из нас.

Экология планеты является нашим общим с вами делом. Об этом стоит не забывать. Все эти актуальные темы активно поднимаются на ежегодном выставочном мероприятии «Электро», которое проходит в самом крупном комплексе страны ЦВК «Экспоцентр».

Развить экологическое мышление учащихся, вовлечь их в реальную деятельность по изучению окружающей среды и её охране, привлечь внимание к использованию энергии, экономии энергии и энергоресурсов, привить навыки экологически безопасного стиля жизни.

Помочь школьникам осознать важность экологии, как науки, научить бережно обращаться с ресурсами Земли, воспитывать доброжелательное отношение к окружающей среде, научить принимать верные решения по вопросам окружающей среды и принимать осмысленные действия.

Оборудование:

Плакаты иллюстрирующие этапы исторического использования энергии.

План урока

  1. Вступительное слово учителя.
  2. Обсуждение темы.
  3. Заключительная часть в форме вопросов.
  4. Итог урока

Ход урока

1. Вступительное слово учителя.

Здравствуйте! В недалеком прошлом маломощные электростанции работающие на угле и нефти с трудом обеспечивали потребности человека. Но и потребности были очень скромные. Естественно и речи не было, что Земля может исчерпать свои ресурсы. Но численность жителей Земли растет в геометрической прогрессии и тем самым увеличивается потребность в энергии. Ученные пытаются решить эту проблему. Международные конференции, научные книги, исследования посвящены поиску дешевых, доступных, экологически безопасных решений. Вот и сегодня на уроке мы поговорим на эту тему. Как мы понимаем эту проблему, что можем сделать для сохранения богатств нашей планеты?

2. Обсуждение темы.

Учитель: Что такое энергетика? (учащиеся отвечают.)

Да, Энергетика- это отрасль хозяйства, охватывающая энергетические ресурсы, выработку, преобразование, передачу и использование различных видов энергии.

А как давно человек начал использовать энергию? (учащиеся отвечают.)

Учитель: Около 500 тыс. лет назад, человек впервые освоил энергию огня- тепловую энергию от сгорания древесины.

10 тыс. лет назад с возникновением земледелия, потребность в энергетических ресурсах возросла, и человек стал строить мельницы, работающие на энергии воды и ветра.

Но с ростом промышленного производства и увеличения численности населения Земли,человек строит теплоэлектростанции работающие на основе каменного угля, нефти и природного газа. Широко осваивается энергия рек- гидроэлектростанции. В конце 20 века освоена атомная энергия, но и это уже не удовлетворяет потребности человека. Но есть и нетрадиционные источники энергии- ветроэлектростанции (используется ветер, заставляющий вращаться турбины и таким образом производит электричество), гелиолектростанции- энергия солнца, геотермальные(пар от воды, нагретый глубоко в Земле, используется для того чтобы повернуть турбины, подключенные к электрическим генераторам.) Человек пытается использовать энергию приливов и отливов, морских течений, жидкого водорода, синтетического топлива.

Но как обстоят экологические проблемы при использовании тех или иных источников для получения энергии? (учащиеся отвечают)

Учитель: Использование тепловой энергии приоритетна. Но! Еще Д.И. Менделеев говорил, что использование нефти Это все равно что сжигать деньги в печи, хотя нефть в чистом виде не используется, а только мазут- продукт её переработки. И ещё при сжигании любого топлива расходуется большое количество кислорода и выделяется углекислый газ в таком количестве,что приводит к экологической проблеме- создаётся “ парниковый эффект”. Это приводит к потеплению климата и как последствия наводнения (нам хорошо знакомы стихийные бедствия в Европе.) При сгорании топлива загрязняется окружающая среда, это приносит вред животным (они либо покидают свои места, либо гибнут, либо происходит мутации в развитии) , изменяется качество питьевой воды, чрезмерное цветение и зарастание водоемов. Это приводит к экологическим катастрофам. Продолжаться так, конечно, до бесконечности не может. Нужна альтернатива, и мы с вами знаем, что тепловые ресурсы небесконечны.

Назовите исчерпаемые и неисчерпаемые источники энергии.

(ребята отвечают.)

Учитель: исчерпаемые источники энергии - это нефть, газ, уголь, уран. То что они могут иссякнуть это одна проблема, но отходы этих станций смертельно опасны для человека.

Неисчерпаемые источники энергии - это энергия биомассы, ветра, солнца, морских волн и течений, тепло земли. Последствия использования этих источников не так опасны для человека и практически неиссякаемы.

К каким последствиям может привести авария на АЭС? (ученики отвечают).

Учитель: Даже без аварии вокруг реактора наблюдается радиоактивный фон, что приводит к генным мутациям и онкологическим заболеваниям.

Но так ли безвредно использование ветра, солнца и воды?

(ребята отвечают)

Учитель: При очень многих плюсов есть минусы. Зависимость ветроэлектростанций от погоды и создается шумовое загрязнение. Уходят животные, что нарушает экологический баланс в данной местности.

Человек чувствует угнетенное состояние. И при всем этом мощность таких станций невелика. В Германии созданы ветровые парки на южном побережья Ютландского полуострова, и в близи посёлка Куликово Калининградской области.

Геотермальная энергия- используется в Исландии, на Камчатке.. Но горячая вода обратно никуда не закачивается, это приведет к загрязнению почв и экологическим нарушениям.

Солнечных электростанций пока очень мало. Это солнечные установки, которые улавливают и преобразуют энергию солнца. Но это зависимость от климатических условий и очень дорого. Такой вид энергии используется в Бразилии, Калифорнии на крышах многоэтажек.

Можно ли как то изменить ситуацию? (ребята отвечают)

Учитель: Самое главное научится экономить энергию. Элементарно экономить электричество в наших квартирах, проводить теплоизоляцию окон для большего сохранения тепла. Эффективное использование энергетических ресурсов., соблюдения требований к охране природы чтобы не нарушался экологический баланс в природе, сократить расходование ресурсов. Установить средства регулирование потребление энергоресурсов (включатели и выключатели.)

3. Заключительная часть.

  1. Как сохранить тепло в домах?
    (провести теплоизоляцию окон.)
  2. Существует ли вечный источник энергии?
    (да, в местах постоянного активного Солнца- пустыня Сахара.)
  3. Что такое энергетика?
    (топливно -энергетический комплекс, который охватывает передачу, преобразование и использование разных видов энергии и энергетических ресурсов)
  4. Что такое энергосбережение?
    (экономия энергии.)
  5. Основные способы энергосбережения в квартирах?
    сократить расход энергии в пустую.)
  6. Исчерпаемые и неисчерпаемые источники энергии.
    (нефть, газ, уголь -исчерпаемы, неисчерпаемые -ветер, солнце)

4. Итог урока.

Учитель: Сформулируйте итог нашей беседы. (дети отвечают)

Беречь энергию, сохранять окружающую среду и как будущие поколение искать альтернативные пути решения проблемы.

Список используемой литературы.

  1. Владышевский Д.В. “ Экология и мы.” Красноярск 1994 г.
  2. Дорс Л. “ До того, как умрёт природа.” М. 1968 г.
  3. Дотто Л. “ Планета Земля в опасности.” М. 1968 г.
  4. Лосев К.С. “ Климат: вчера, сегодня…. Завтра?” Л. 1985 г.