Очистка металлических поверхностей от ржавчины. Гидроструйная очистка металлоконструкций. Очистка металла от ржавчины и коррозии перед окраской

Международные стандарты ИСО 8501, 8502, 8503 устанавливают методы оценки состояния поверхности стальных конструкций, стандарт ИСО 8504 дает руководство по методам очистки стальных поверхностей с указанием возможностей каждого метода в достижении определенных уровней чистоты поверхности.

Классификация исходных и очищенных поверхностей

Стальные поверхности, подлежащие очистке, классифицируют по степеням окисления по стандарту ИСО 8501-1 и ГОСТ 9.402-2004:
  • А - поверхность стали почти полностью покрыта прочно сцепленной с металлом прокатной окалиной. На поверхности почти нет ржавчины.
  • В - поверхность стали начала ржаветь, от нее начинает отслаиваться прокатная окалина.
  • С - поверхность стали, с которой в результате коррозии почти полностью исчезла прокатная окалина, или с которой прокатная окалина может быть легко удалена. На поверхности стали, при визуальном осмотре, наблюдаются небольшие изъязвления коррозии.
  • D - поверхность стали, с которой в результате коррозии прокатная окалин исчезла и на которой наблюдается язвенная коррозия на всей поверхности при визуальном осмотре.

Существует большое количество различных состояний металлических поверхностей, требующих очистки перед окраской. Прежде всего, это касается ремонта уже окрашенных объектов. Возраст объекта и его расположение, качество первоначальной поверхности, свойства старого лакокрасочного Пк и количество дефектов, тип предыдущих и будущих агрессивных условий и предполагаемое но-вое лакокрасочное Пк - все влияет на предстоящую подготовку поверхности.

Вместо этого фактическая пропускная способность тока может быть основана на повышении температуры. Повышение температуры зависит от того, был ли кабель сложен или голый, работать на открытом воздухе или помещаться в трубопровод, а в кабелепроводе - количество кабелей в этом канале. Напряжение, необходимое для электроочистки, зависит от состава раствора, требуемой плотности тока, температуры, анодной области и расстояния между анодом и катодом. Если концентрация раствора слишком низкая, и вы используете рекомендуемое напряжение, вы можете создать так много кислорода в областях с высокой плотностью тока, что приведет к образованию ржавчины поверхности детали.

При выборе метода подготовки поверхности следует учитывать требуемую степень очистки и шероховатость поверхности, соответствующие наносимой системе лакокрасочного Пк. С целью снижения стоимости работ следует выбирать степень подготовки поверхности в соответствии с целью и типом ЛКМ или систему Пк в соответствии со степенью очистки, которая может быть достигнута.

Блоки 0-9 В необходимы для приложений, требующих более 30 аф. Выпрямители 0-18 В могут потребоваться, если площадь стеллажа чрезвычайно велика или расстояние между анодом и катодом велико. Для всех объемных работ этот более высокий уровень напряжения требуется.

Общее руководство для расстояния между анодом и катодом составляет один вольт на каждый дюйм расстояния. Чтобы переносить ток от выпрямителя к резервуару, медные шинные шины и анодные и катодные крюки должны быть рассчитаны на перенос силы тока, которая будет давать чуть больше максимальной ожидаемой плотности тока. Используйте жесткие, чистые соединения, чтобы уменьшить сопротивление потоку и возникающий перегрев.

Абразивная струйная очистка является наиболее эффективным методом механической подготовки поверхности и характеризуется следующими свойствами:

  • возможность достижения высокой производительности;
  • струйно-абразивное оборудование может быть как стационарным, так и пе-редвижным;
  • метод применим для большинства типов и форм поверхностей;
  • могут достигаться разные степени подготовки и профилей поверхности;
  • возможно частичное удаление отдельных участков поврежденного Пк, оставляя неповрежденным основное Пк удовлетворительного качества.

Подготовка поверхности по ИСО 12944-4 может быть первичной и вторичной:

Эти соли могут фактически дойти до точки разрушения электрической цепи. Настройте график обслуживания, чтобы регулярно чистить контакты. Подготовка деталей для гальванических покрытий. Функция электроочистителя состоит в том, чтобы подготовить деталь для последующих шагов.

Очистка включает активацию поверхности детали, что обычно делается с помощью электроочистки с обратным током. Термины «анодная» и «обратная» чистка часто используются взаимозаменяемо. При анодной очистке очищаемые детали подключаются к выпрямительному выходу выпрямителя, а в щелочном растворе электроочистителей. Низкое напряжение является нормой. Плотность тока варьируется от 10 до 15 дюймов в зависимости от очищаемого металла и времени очистки. Более высокие плотности тока могут использоваться, когда время очистки короче.

  • первичная (общая) подготовка − это подготовка всей поверхности в целом до обнажения стали;
  • вторичная (локальная) подготовка поверхности - это подготовка поверхности с оставлением прочно сцепленных частей органических и металлических покрытий.
Первичная подготовка проводится с целью удаления прокатной окалины, ржавчины, различных загрязнителей и уже имеющихся Пк с поверхности стали перед нанесением грунтовочного слоя. После первичной подготовки вся поверхность представляет собой оголенную сталь.

Окалина является ненадежной подложкой, так как она имеет отличающийся от стали коэффициент расширения, в связи с чем при смене температур хрупкий слой окалины может отслаиваться, что ведет к разрушению Пк.

На поверхности поверхности анода и растворе выделяется кислород. Скручивание этих пузырьков газа помогает в удалении почвы. По возможности, для окончательной очистки желательно использовать анодную электроочистку, потому что поверхность металла фактически растворяется, а также очищается. Это действие удаляет металлические осколки и предотвращает осаждение нелипких металлических пленок и частиц. Кроме того, избегают охрупчивания водорода, используя анодную очистку.

Технические характеристики машин шлифовальных ручных электрических

Части, подвергшиеся термической обработке, сварке или другим источникам оксидов, часто могут потребовать цикл двойной очистки в зависимости от степени окисления. Провал минеральной кислоты обычно следует за окончательным очистителем, чтобы нейтрализовать щелочную пленку на поверхности металла.

Вторичная подготовка проводится с целью локального удаления ржавчины и инородного материала с поверхности стали, покрытой грунтовкой, перед нанесением антикоррозионной лакокрасочной системы.

Под подготовкой поверхности под окраску подразумевается не только очистка, но и различные операции, выполняемые для повышения защитных и физико-механических свойств Пк. Подготовка поверхности - это одна из основных предпосылок успешной защиты.

Чтобы избежать травления и потускнения, вы должны контролировать концентрацию плотности, температуры и более высокой концентрации, особенно при обработке цветных металлов. При обработке литых под давлением латуни и цинка избегайте длительной очистки в обратном токе, высокой плотности тока, высоких температур и низких концентраций очистителя для предотвращения обезвреживания и чрезмерного травления. Щелочная очистка обратного тока не рекомендуется для алюминия, хрома, олова, свинца или любых металлов, растворимых в щелочных электроочистителях.

На выбор метода обработки под окраску влияют материал очищаемой конструкции, толщина материала, размеры, условия проведения работ по очистке, а также характер удаляемых посторонних включений.

Международный стандарт ИСО 8501-1 устанавливает стандартные степени механической первичной подготовки поверхности.

Стандарты ИСО указывают семь степеней очистки при первичной подготовке поверхности. Каждый метод подготовки обозначается буквами. Очистка абразиво-струйным методом обозначается буквами «Sa», очистка ручным и механизированным инструментом обозначается буквами «St». Следующее за буквами число указывает степень очистки.

Катодная или прямая очистка. Подключение частей к отрицательной подаче выпрямителя делает их катодными. То же оборудование, плотность напряжения и тока, указанное для анодной очистки, обычно является удовлетворительным для катодной очистки. На поверхности работы выделяется водород, а не кислород. Объем выделяемого на катоде водорода вдвое больше, чем кислорода, выделяемого на аноде при заданной плотности тока. Поэтому на катоде достигается больше очистки газа, чем на аноде. По этой причине катодную очистку иногда используют в качестве предварительного очистителя с последующей анодной очисткой.

Стандарты ИСО указывают шесть степеней подготовки поверхности при вторичной подготовке.

Опыт эксплуатации окрашенных конструкций свидетельствует о том, что при ремонтных работах не всегда нужно полностью удалять все предыдущие покрытия. Это в особенности относится к тем случаям, когда техническое обслуживание производится регулярно. В случаях, когда производится локальное удаление покрытия, необходимо соблюдать следующие условия:

Работа на самом деле «покрывается» в очистителе с постоянным током. Любой положительно заряженный материал будет притягиваться и может быть уменьшен и осажден на поверхности детали. Металлические пленки осаждаются от ионов в очищающем растворе. Обычно эти пленки являются неприемлемыми, но их трудно обнаружить и удалить. Следовательно, очистители с постоянным током должны отбрасываться и повторно обрабатываться чаще, чем очистители обратного тока.

Безпылевые дробеструйные установки

Любая работа, которая отрицательно сказывается на водородном охрупчивании, не должна очищаться катодом, если после обработки не будут приняты соответствующие меры для сброса водорода. Хромовое загрязнение чистящих средств иногда неизбежно, поскольку одна и та же стойка используется для очистки, хромирования и других гальванических покрытий. Чистка с постоянным током более чувствительна к окрашиванию от загрязненных хромом очистителей, чем очистка от обратного тока.

  • оставшееся нетронутым покрытие должно способствовать увеличению срока службы, улучшению защиты от коррозии новой системы лакокрасочного покрытия и быть совместимым с ней. Рекомендации по совместимости даются в ИСО 4627;
  • во время очистки локальных участков покрытий, пораженных коррозией до металла, не должны быть повреждены соседние участки;
  • возможность реального удешевления техобслуживания.

Степени ухудшения состояния окрашенных поверхностей, подлежащих очистке, должны оцениваться в соответствии с ИСО 4628:1982. «Красочные и лаковые покрытия. Оценка состояния красочных покрытий. Определение интенсивности, количества и размера дефектов общих типов». По возможности необходимо иметь дополнительную информацию о типе прежнего покрытия, количестве нанесенных слоев, толщине покрытия, его адгезии, а также название фирмы-изготовителя конструкции.

Особенности абразивной струйной очистки

Чистка постоянного тока обычно используется для очистки хрома, олова, свинца, латуни, магния и алюминия, которые растворяются или вытравливаются при анодной очистке. Он также обычно используется для очистки полированного никеля до хромирования. Анодная очистка оставила бы пассивную пленку оксида никеля, что предотвратит надлежащее осаждение хрома.

Работа может быть очищена на стойках или в бочке. Очистка и удаление окалины облегчаются щелочными чистящими растворами, содержащими восстановительные и окислители в сочетании с сильными металлическими хелаторами. Оксиды также могут быть удалены без опасности травления или развития смазки, связанной с кислотным травлением. На границе раздела грунтов и очищающего раствора происходит реакция. Эта реакция истощает концентрацию чистящих химикатов на границе раздела. При кратковременном отключении питания реакция прекращается, и концентрация очистителя пополняется.

После локальной подготовки поверхности остающиеся части существующих покрытий должны быть свободны от загрязняющих веществ; при необходимости им следует придать шероховатость для обеспечения удовлетворительной адгезии. Адгезия оставшегося красочного покрытия должна быть проверена испытанием поперечного надреза в соответствии с ИСО 2409.

Когда ток снова возвращается, концентрация раствора - это то, что должно быть на интерфейсе. Типичный цикл должен составлять 8-9 секунд с током, затем 1-2 секунды с отключением питания. Этот метод широко используется в таких процессах, как электрохимическое удаление заусенцев или механическая обработка, электрополирование и гальванопластика. Если компания использует тот же источник питания для очистки, а не для повторной установки, финишер может использовать текущее прерывание очистки.

Полярность. Есть простые способы определить, является ли часть катодной или анодной в электроочистителе. Если сталь или медь затемняются в очистителе с обратным током, часть, вероятно, является катодной. Замените кусок меди на очищаемую работу. Если он становится ярче вместо потемнения, полярность работы, вероятно, анодная.

Способы очистки

Очистка ручным инструментом

Ручная очистка: метод подготовки металлических поверхностей с помощью ручных инструментов, без применения энергопитания.

Ручную очистку поверхности проводят с использованием обрубочных молотков для скалывания ржавчины и других загрязнений, ручных проволочных щеток, шпателей, скребков, абразивных шкурок, наждака. Молотки для скалывания применяются для удаления толстого рыхлого слоя ржавчины, чтобы сделать более экономичной абразивную струйную очистку. Обработка молотками часто проводится в сочетании с зачисткой щетками. Обработка такими молотками непригодна для общей подготовки поверхности перед нанесением покрытий. Для удаления рыхлого слоя ржавчины возможно также применение скребков.

Инертная смазка. Если инертная смазка работает, прежде чем она попадет в пылесос, работа, вероятно, будет обезжирена. Как правило, работу можно очищать лучше и легче, если она не была обезжирена. Если необходима предварительная очистка, очистка вымывания менее дорогостоящая, чем обезжиривание.

Также возможна слишком высокая температура раствора. Плавающие слои. Плавающие слои на поверхности раствора электроочистителя могут быть вызваны высыханием поверхностно-активных веществ, часто результатом превышения рекомендуемой концентрации очистителя. Или температура может быть слишком высокой, или кислоту можно ввести случайно, снижая щелочность раствора.

Очистка ручным инструментом иногда применяется на начальном этапе для предварительной очистки, с целью снятия относительно легко удаляемых загрязнений перед использованием механизированных инструментов.

Очистка механизированным инструментом

Это метод подготовки металлических поверхностей с применением механизированных ручных инструментов, но без использования струйно-абразивной очистки. Механизированную очистку проводят с использованием вращающихся проволочных щеток, машин для зачистки абразивными шкурками, дисков для зачистки абразивными шкурками, абразивных точильных камней, зачистных молотков с электро- или пневмоприводом, игольчатых пистолетов, шлифовальных кругов и других различных шлифовальных приспособлений. Зачистка проволочными щетками применима для подготовки сварных швов, но не пригодна для удаления прокатной окалины. Недостаток - очищаемая поверхность не полностью очищается от продуктов коррозии и может становиться отполированной и загрязненной маслом.

Участки поверхности, недоступные для подобных инструментов, должны подготавливаться вручную. При очистке механизированным инструментом необходимо не допускать чрезмерной шероховатости поверхности, острых выступов и кромок, которые часто не перекрываются слоем лакокрасочного покрытия задан-ной толщины. При использовании проволочных вращающихся щеток необходимо не допускать полировки остаточной окалины до слишком гладкого состояния, что может приводить к ухудшению адгезии покрытия. Применение пневматических молотков должно быть ограничено сварными швами, углами, неровными кромками и т.д., поскольку удары острой грани могут создать неприемлемый профиль плоских поверхностей.

Очистка металла от ржавчины и коррозии перед окраской

Плотность тока. Уменьшите количество стоек в очистительном баке, чтобы увеличить плотность тока. Если очистка является удовлетворительной, уменьшите площадь поверхности детали, подвергаемой электроочистке, или увеличьте ток. Часто более короткое время при более высокой плотности тока будет работать, тогда как более длительное время при меньшей плотности тока не будет.

Высокое напряжение, низкий ток. Если ток низкий и напряжение высокое, проверьте состояние электродов. Удалите почву с их поверхностей. Убедитесь, что контакты стойки с шиной сплошными и не изолированы коррозией или грунтом. Убедитесь, что провода шины автобусов и другие переходы не перегреваются, что указывает на плохой контакт или использование низкоросшей шины. Убедитесь, что электроды на обеих сторонах стойки работают и что нет другого груза из одного источника питания, что фактически лишает ток.

Перед очисткой ручным и механическим инструментом необходимо удалить скалыванием все толстые слои ржавчины. Видимые масло, смазка и грязь также должны быть удалены.

Очистка механизированным инструментом эффективнее и производительнее очистки ручным инструментом, но по эффективности уступает абразивной струйной очистке.

Попросите электрика проверить выпрямитель, чтобы узнать, изношены ли мосты. Если напряжение и напряжение, по-видимому, нормальные, проверьте площадь рабочей нагрузки, чтобы убедиться, что плотность тока находится в пределах спецификаций. Возможно, было больше площади, чем обычно, уменьшая плотность тока ниже необходимой для надлежащей очистки.

«Механика Желаний» – гарантия чистоты и качества!

Контакты стойки, биполярность. Проверьте решетку. Он построен для обеспечения адекватного тока? Если есть биполярный ток, замените изоляторы на баке. Пенопласт. Чрезмерная пена может быть вызвана перетаскиванием почв, которые производят мыло, или химическими веществами, которые действуют как смачивающие или вспенивающие агенты. Потеря пленочного покрытия может быть вызвана чрезвычайно жесткой водой, перетаскиванием кислоты во второй очиститель двойной линии очистки или перетаскиванием другого очищающего раствора, который содержит несовместимый смачивающий агент.

Очистка ручным и механизированным инструментом представляет собой метод подготовки поверхности, обеспечивающий худшую степень ее чистоты по сравнению с достигаемой при абразиво-струйной обработке. Для достижения качества подготовки, аналогичного абразиво-струйному методу необходимо применение более чем одного типа механизированного инструмента, что делает такую подготовку поверхности более сложной и дорогостоящей. Более того, при этом невозможно удалить масло, смазки и активирующие коррозию вещества, например хлориды и сульфаты.

Управление энергопотреблением и решениями. В области энергосбережения управляемое перемешивание растворов в циклах обработки является жизнеспособным инструментом. Сообщается, что агитация «Эдуктор» увеличила функциональный доступный ток на целых 25% в одном случае. Это, в свою очередь, позволило повысить производительность обработки деталей.

Второй инструмент управления - это фильтрация. Если вы очистите его на станции очистки, зачем переносить почву и масла на следующие велосипедные станции? До тех пор, пока 80 процентов перетаскиваемых грунтов из очистителя, повторно переделанного на детали, больше не нужно удалять на станции нанесения покрытия.

Однако в некоторых случаях очистке механизированным инструментом отдают предпочтение перед абразиво-струйной очисткой, например, когда необходимо избежать образования пыли или скопления отработанного абразива.

При окончательной подготовке поверхности перед окраской удаляются все заусенцы, острые края или срезы, образовавшиеся во время операций очистки. Остающаяся краска не должна меть блеска и края всей остающейся краски сводятся на нулевую толщину (под углом). Поверхность просушивается, если это необходимо, и с помощью щеток, пылесосов или продувки струей сухого, чистого воздуха удаляются все остаточные продукты очистки и пыль.

Абразивоструйнная очистка

Сухая абразивоструйная очистка

Сухая абразивоструйная очистка или так называемый бластинг заключается в ударе абразивного потока с высокой кинетической энергией о подготавливаемую поверхность. Подача абразива осуществляется при помощи центробежной силы, сжатого воздуха или эжекции. В воздушно-абразивный поток допускается добавлять небольшое количество воды для устранения пыли.

Центробежная абразивная струйная очистка осуществляется на неподвижных установках или в передвижных устройствах, в которых абразив подается на вращающиеся колеса или лопасти разбрасывающие абразив равномерно и с большой скоростью по очищаемой поверхности.

Абразивная струйная очистка сжатым воздухом

Абразивная струйная очистка сжатым воздухом осуществляется при подаче абразива в поток воздуха и направлении образующейся воздушно-абразивной смеси с высокой скоростью из сопла на очищаемую поверхность. Абразив может быть впрыснут в воздушный поток из емкости, находящейся под давлением, или увлечен этим воздушным потоком в процессе всасывания из емкости, не находящейся под давлением. Этим способом очищают поверхности с помощью дробеструйных аппаратов.

Абразивная струйная очистка с вакуумом или всасывающей головкой

Этот метод аналогичен абразивной струйной очистке сжатым воздухом с той разницей, что сопло заключено внутри всасывающей головки, которая герметично закреплена на стальной очищаемой поверхности и служит для сбора отработанного абразива и загрязнений. В качестве альтернативного варианта воздушно-абразивный поток может быть подан на металлическую поверхность при использовании пониженного давления во всасывающей головке, т.е за счет эжекции. Этот метод имеет название вакуум-бластинг.

Абразивная струйная очистка с впрыскиванием влаги

Этот метод аналогичен абразивной струйной очистке сжатым воздухом с той разницей, что в воздушно-абразивный поток добавляют незначительное количество жидкости (обычно чистую пресную воду), что создает метод струйной очистки, при котором не образуется пыли в диапазоне размера взвешенных частиц менее 50 мкм. Расход воды составляет 15-25 л/ч.

Влажная абразивная струйная очистка со сжатым воздухом

Этот метод аналогичен абразивной струйной очистке сжатым воздухом и отличается тем, что в поток добавляют жидкость (обычно чистую, пресную воду). При этом очистка поверхности производится потоком воды, воздуха, абразива. При влажной абразивной очистке используют смесь абразива с водой в соотношении от 1:2 до 1:6.

Суспензионная струйная очистка

Суспензионная струйная очистка заключается в подаче дисперсии мелких абразивных частиц в воде или другой жидкости на очищаемую поверхность.

Струйная очистка жидкостью под давлением

Абразив (или смесь абразивов) вводят в поток жидкости (обычно чистой пресной воды), и этот поток направляют через сопло на очищаемую поверхность.

Поток представляет собой, главным образом жидкость, находящуюся под давлением, а количество добавленных абразивов, как правило, меньше, чем в случае влажной абразивной струйной очистки сжатым воздухом.

Около 40 лет назад началось использование очистительных свойств водяной струи высокого давления (до 100 МПа).

Этот метод основан на воздействии кинетической энергии высоконапорной водяной струи на обрабатываемую поверхность. При этом струя воды позволяет удалять с поверхности загрязнения и отложения любой физической природы и химического состава: ржавчину, консервационные смазки, лакокрасочные покрытия, битум, смолы, нагар, окалину и т.д. Введение в струю абразива позволяет легко удалять поверхностные слои металла.

Давление воды зависит от типа удаляемых загрязнений, таких как водорастворимые вещества, рыхлая ржавчина и красочные покрытия со слабым сцеплением. Если в процессе очистки использовались поверхностно-активные вещества, необходимо ополаскивание чистой, пресной водой.

Обычно используются следующие методы водной струйной очистки:

  • водная струнная очистка высокого давления (70-170 МПа);
  • водная струйная очистка сверх высокого давления (свыше 170 МПа).

Гидроструйная очистка при высоком давлении имеет еще название «гидро-джеттинг».

Гидроджеттинг под сверхвысоким давлением (более 170 МПа) применяется для полного удаление всех Пк и ржавчины. Результат сравним с сухим бластингом, но на поверхности после сушки наблюдаются проблески ржавчины.

Гидроджеттинг под высоким давлением. (70 −170 МПа) позволяет удалить большинство красок и продуктов коррозии. Магнетиты (черные окислы) и прочно держащиеся Пк могут остаться, хотя они с некоторыми трудностями также поддаются удалению.

Гидроочистка под средним давлением (35-70 МПа) позволяет удалить непрочно держащиеся краску, ржавчину, загрязнения. Но черный железный оксид (магнетит) останется. Однородная поверхность не может быть получена.

(до 35 МПа) позволяет удалить соли, загрязнения, шелушащуюся краску. В основном это промывка поверхности.

Гидроочистка под низким давлением с применением абразива. 0,6-0,8 МПа. Скорость очистки - 10-16 м²/час в зависимости от удаляемого материала. Позволяет уменьшить расход абразива, пылеобразование, избежать образования искр. Результат сравним с сухим бластингом, нона поверхности после сушки наблюда-ются проблески ржавчины.

В настоящее время данные технологии активно используются там, где необходимо быстро, качественно и безопасно выполнить работы по очистке и подготовке поверхности. Такое оборудование многофункционально и позволяет выполнять широкий спектр работ в различных отраслях промышленности. В процессе подготовки поверхности перед окраской могут выполняться следующие виды работ:

  • беспылевое пожаробезопасное удаление коррозии с поверхности металла;
  • отмывка речных и морских судов, подготовка к нанесению покрытий;
  • отмывка любых покрытий, отложений с металлических поверхностей (например удаление асфальто-смолопарафинов с внутренней поверхности газовых труб после эксплуатации или удаление битумных загрязнений;
  • внутренняя и наружная чистка труб и коллекторов различных диаметров и конфигураций.

Агрегаты высокого и сверхвысокого давления представляют собой высоко-эффективное, экологически чистое и энергосберегающее оборудование на базе водоструйных технологий высокого давления.

Чистка металлической поверхности высоким и сверхвысоким давлением водяной струи не вызывает нарушений в структуре металла.

Воздействие водяной струи высокого или сверх высокого давления на поверхность можно подразделить на:

  • гидравлическое (однородная струя воды той или иной формы);
  • гидродинамическое (динамические удары струей воды по поверхности);
  • гидроабразивное (смешанная струя воды и абразива).

Частные случаи использования струйной очистки

Струйная очистка со сметанием

Заключается в очистке или придании шероховатости органическим и металлическим покрытиям или в удалении поверхностного слоя (или слабо сцепленного слоя) таким образом, чтобы покрытие с сильным сцеплением, находящееся под первым, не оказалось бы пробитым абразивными частицами и не было бы сорвано с оголением подложки (см. таблицу 3). С этой целью оптимизируют различные параметры струйной очистки, например, твердость абразива, угол атаки, расстояние от сопла до подложки, давление воздуха и размер частиц абразива. Как правило, для струйной очистки со сметанием используют воздух низкого давления и мелкий абразивный порошок в форме «звездочек». Применяемый абразив: малая и средняя фракция (0,2-0,5/0,2-1,5мм). Такая очистка представляет собой легкий бластинг и имеет еще другое название: «свипинг». Легкий свипинг применяется с целью придания шероховатости неповрежденному Пк. Сильный свипинг, выполняется с целью удаления слоев непрочно держащегося покрытия.

Точечная струйная очистка

Представляет собой обычную форму струйной очистки сжатым воздухом или впрыскиванием влаги, когда очистке подвергаются только отдельные точки (например, пятна ржавчины или сварки) на поверхности. В зависимости от интенсивности точечной струйной очистки достигается степень подготовки поверхности, эквивалентная P Sa 2 или P Sa 2½ (см. табл 3).

Очистка пламенем

Включает очистку от ржавчины термическими методами с использованием горелок и использованием ацетилена или пропана с кислородом. Она удаляет практически всю прокатную окалину, но не полностью всю ржавчину. Поэтому этот метод не может быть применим при высоких требованиях к покрытиям. После очистки пламенем поверхность обрабатывают при помощи механизированных щеток и перед окрашиванием дополнительно очищают от пыли. Газопламенную очистку применяют при толщине металла не менее 6 мм.

Очистка сухим льдом (криогенный бластинг)

Криогенный бластинг (обработка гранулами сухого льда) - это эффективный способ очистки поверхностей от загрязнений с помощью высокоскоростной струи гранул сухого льда основывается на трех основных принципах.
  1. Гранулы сухого льда имеют значительно более низкую температуру (-79 °С) по сравнению с очищаемой поверхностью. Резкое снижение температуры поверхностного слоя вызывает эффект «термического шока», при котором охлажденные до хрупкого состояния загрязнения легко отслаиваются от поверхности вследствие различий их коэффициентов линейного расширения.
  2. При соударении с поверхностью объекта к гранулам подводится огромное количество тепла. В результате твердые частицы сухого льда мгновенно нагреваются и переходят в газообразное состояние, стремясь расшириться в сотни раз. Образовавшийся газ, частично проникая в пространство между очищаемой поверхностью и загрязнениями, образует так называемый «газовый клин», сдирающий под давлением частицы загрязнений с поверхности.
  3. Кинетическая энергия гранул сухого льда, вылетающих из сопла пистолета со скоростью, близкой к скорости звука, оказывает перманентное механическое воздействие на поверхность, удаляя загрязнения при соударении.

Данная технология уменьшает влажность процесса и снижает риск роста бактерий и образования ржавчины. Очистка сухим льдом является экологически полноценным технологическим процессом и не наносит вреда окружающей среде.

Тройной эффект воздействия (кинетический, термический, динамический) потока сухого льда обеспечивает высокоэффективную очистку поверхности даже мягких материалов без их повреждения.

    При очистке сухим льдом достигается эффективная очистка поверхности от:
  • масложировых загрязнений;
  • лакокрасочных покрытий;
  • нагаров;
  • полимерных покрытий;
  • других загрязнений.

  • Достоинства метода очистки гранулами сухого льда:
  • сухой метод (очистка без использования воды или иных жидкостей);
  • очищаемая поверхность не повреждается;
  • не требуется утилизации отходов (после очистки сухой лед испаряется, превращаясь в углекислый газ);
  • низкие трудозатраты;
  • неабразивный метод (отсутствие абразивного эффекта позволяет эффективно чистить даже легко повреждаемые материалы);
  • безопасность для персонала и окружающей среды;
  • нет необходимости в отключении электропитания.

Оборудование для очистки поверхностей

Дробеструйное оборудование

Одним из наиболее распространенных и эффективных способов механической очистки металлических поверхностей от различных загрязнений является струйно-абразивный метод. Этим способом очищают поверхности с помощью дробеструйных аппаратов.

Дробеструйный аппарат - это устройство создающее высокоскоростной поток абразивного материала. Стационарно включенный в цикл оборота абразивного материала дробеструйный аппарат является основным узлом установки дробеструйной очистки.

Аппараты оснащают воздушными фильтрами-влагоотделителями для предотвращения попадания в бак конденсата и масел от компрессоров. Это предотвращает перебои в работе вызванные выгрузкой из бака отсыревшего абразива. Для питания установок используется сжатый воздух, очищенный от влаги и масла, давлением 0,5-1,0 МПа и расходом воздуха 1,5-10 м³/мин на один рабочий пост в зависимости от диаметра струйного сопла.

Безпылевые дробеструйные установки

Установки безпылевой струйно-абразивной обработки имеют замкнутый оборот абразива.

В зоне обработки происходит отсос пыли и частиц абразива специальной насадкой, в которой расположено сопло. Пыль и частицы старой краски накапливаются в специальной емкости для дальнейшей утилизации. Для работы в углах, на кромках и прочих сложных элементах применяется ряд специализированных насадок. Абразив используется повторно.

Качество абразива при этом сохраняется и его расход значительно снижается. При этом становится рентабельным использование твердых абразивов типа карбида бора, что значительно увеличивает производительность по сравнению с применением кварцевого или речного песка. В зоне обработки происходит отсос пыли и частиц абразива специальной насадкой, в которой расположено сопло.

Можно проводить струйно-абразивные работы в любом месте без негативного влияния на окружающую среду загрязнениями и пылью. Установки различаются способом создания струи: напорным и эжекционном. В первом случае абразив выдавливается из котла высоким давлением воздуха и ускоряется в струйном сопле до сверхзвуковых скоростей. Во втором случае абразив засасывается в струйный пистолет и далее в струйное сопло, низким давлением, создаваемым в нем потоком воздуха.

Установки для дробеметной обработки

Дробеметные установки предназначены для струйно-абразивной обработки, управляемой: вручную, дистанционно или автоматически.

Поток дроби создается центробежными дробеметными аппаратами, стационарно установленными в камере очистки.

Процесс дробеметной обработки происходит в специальных камерах, изготовленных из износостойкой стали, оборудованных системами вентиляции воздуха и рециркуляции дроби.

Камеры ручной очистки

Для очистки от ржавчины, окалины и старых лакокрасочных покрытий малогабаритных деталей и при их невысокой программе на машиностроительных предприятиях применяются камеры ручной струйной очистки. В этих камерах абразивоструйная обработка поверхностей производится в замкнутом пространстве, где в зоне обработки находятся только руки оператора. К несомненным плюсам данного вида оборудования относятся отсутствие необходимости создания специальных площадок или помещений, а также отсутствие необходимости спецодежды для оператора Выпускаемые камеры имеют два типа подачи абразивного материала: напорный (рис.4) и эжекторный. В камерах эжекторного типа разгон и подачу абразива осуществляет сжатый воздух. В струйном пистолете сжатый воздух создает эжекцию. За счет разряжения абразив подается в сопло, где и происходит его разгон. В камерах напорного типа абразив забирается из рабочей зоны, сепарируется, очищается от пыли и крупных частиц и подается в сопло из напорного аппарата. В напорных аппаратах производительность по сравнению с эжекторными выше в несколько раз. Управление подачей абразива осуществляется пневмопедалью. При этом в различных модификациях камер возможна установка средств автоматизации или механизации струйно-абразивной обработки.

Автоматизированные струйно-абразивные камеры

При высоких программах обработки деталей появляется необходимость автоматизации процесса струйно-абразивной обработки. Автоматизация процесса позволяет увеличить производительность обработки, точно позиционировать де-тали в зоне обработки, управлять параметрами струйно-абразивного процесса. Возможны следующие схемы автоматизации: проходная; вращательно-поступательная, схема тактового стола, барабанного типа.

Обитаемые камеры для струйно-абразивной обработки

При обработке крупногабаритных конструкций, сложных пространственных ферм и массивных металлоконструкций целесообразно использовать обитаемые камеры. Деталь помещается внутрь камеры на тележке или каком-либо другом транспортном механизме, где и происходит обработка.

Обитаемая камера - это комплекс оборудования, который обеспечивает подачу и разгон абразива, сбор и улавливание пыли, очистку воздуха от пыли и обеспыливание абразива. В основе комплекса стоит дробеструйное помещение, достаточное по своим размерам для обработки деталей необходимых размеров. Дробеструйное помещение или обитаемая камера представляет собой прочную конструкцию из профилей и стального листа. В зависимости от потребностей Заказчика камеры оснащаются: системами автоматического сбора и подачи абразива, системами сепарации абразива, промышленными фильтрами и системами вентиляции, компрессорным оборудованием.

Обработка может производиться несколькими способами: оператор в специальном снаряжении обрабатывает конструкции вручную; обработка производится в полуавтоматическом режиме - оператор руководит обработкой при помощи специального манипулятора; обработка происходит в автоматическом режиме - оператор следит только за технологическими параметрами процесса.

Конструкции обитаемых камер не бывают унифицированными и зависят, как правило, от номенклатуры обрабатываемых деталей и программы их выпуска.

Система для сбора и транспортировки абразивного материала

Это система, с помощью которой отработанный абразивный материал собирается и транспортируется к бункеру или сепаратору, из которого очищенная дробь снова подается в дробеструйный аппарат.

Существуют следующие системы сбора абразива: скребковый пол, ленточный транспортер, шнек, вакуумный сбор.

Оборудование при гидроструйной обработке высокого давления

Гидравлические очистители с различными параметрами и имеют две главные характеристики: максимальное рабочее давление воды и объем потока воды на выходе тракта высокого давления при максимальном давлении воды. Высокое давления воды позволяет удалять различные типы загрязнений и отложений с поверхности металла. Величина объема потока в единицу времени определяет производительность при очистке поверхности от различных типов загрязнений.

Гидродинамический и гидрообразивный способы наиболее перспективны. Производительность и эффективность обработки поверхности выше, чем при пневмопескоструйном способе, полностью отсутствует пыль, можно производить работы во взрыво- и пожароопасных условиях. Данные работы производятся только при положительных температурах. При очистке стальных конструкций от ста-рой краски и грязи, а также при мойке сильно загрязненных нефтепродуктами поверхностей наибольший эффект дает применение аппаратов с рабочим давлением 20-50 МПа при потоке воды 10-30 л/мин. Использование прямоструйных форсунок при давлении 35-50 МПа позволяет аккуратно и быстро удалять битумные покрытия. Установки с такими характеристиками применяют при очистке крупных нефтехранилищ, трубопроводных обвязок на газокомпрессорных станциях.

Очистительные свойства воды можно усилить на 30-50% применением гидрофрезы и на 50-100% за счет введения в струю абразива. Гидрофреза реализует режущие свойства воды и позволяет быстро удалять лакокрасочные покрытия, остатки масел, битума, консервирующих смазок и т.п. с поверхностей большой площади.

Гидропескоструйная насадка с соплом из износостойкого материала удаляет любые виды покрытий, нагара, окалины, коррозии с поверхностей металлоконструкций, трубопроводов, емкостей и т.п. Ресурс сменного износостойкого сопла зависит от твердости и размера фракций абразива и составляет, в среднем, 300-400 часов.

Гидроочиститель с рабочим давлением 35-38 МПа и потоком воды с абразивом 20 л/мин позволяет при удалении коррозии с металла достигать производительности до 20 м²/час.

На российском рынке фирмами ООО ТКС, «Brass» и «Зевс технологии» широко представлены аппараты, позволяющие решать любые задачи. Данные аппараты представляют стационарные и мобильные установки, оснащенные плунжерными насосом высокого давления, регуляторами давления и перепускным клапаном.

Оборудование для очистки сухим льдом

Преобразование жидкой углекислоты в гранулы твердого сухого льда осуществляется с помощью аппарата, который называется пелетайзер (гранулятор, от английского pellet - гранула), который охлаждает углекислоту до требуемой температуры (-79 °С) . Получение гранул необходимых размеров и плотности осуществляется пропусканием получившейся твердой фракции через экструдер.

Для бластинговой очистки наиболее подходящими являются гранулы «сухого льда» диаметром от 2 до 3 мм. Длина гранул от 2,5 до 10,2 мм. Для работы бластера необходимо подключение сжатого воздуха, давлением 2-14 атмосфер и объемом 4,5 - 12 м³/мин. Бластер производит тонкую регулировку расхода сухого льда и давления.

Основным достоинством криогенной очистки является то, что после обработки происходит сублимация сухого льда и при этом не требуется последующая утилизация чистящего вещества.

Параметры контроля очищенных поверхностей

Шероховатость очищенной поверхности характеризуется несколькими пара-метрами: Rz, Rt, Ra.

Rz - средняя величина (10 замеров) расстояний между пиком и впадиной - про-филь бластинга.

Rt - максимальное расстояние между пиком и впадиной.

Ra - среднее арифметическое. Среднее расстояние к воображаемой центральной линии, которая может быть нарисована между пиками и впадинами - средняя центральная линия - СЦЛ (CLA) (ISO 3274). Обычно используют Rz.

Профиль бластинга Rz. = примерно 6 кратному расстоянию до СЦЛ.
Химические загрязнения в виде водорстворимых солей не видны и частично остаются на поверхности. Присутствие чрезмерного количества этих солей может привести к появлению пузырей в связи с осмосом, прохождением влаги через покрытие, которое является мембранной.

Для танковых покрытий максимально допустимый объем водорастворимых солей в минеральных абразивных материалах составляет 300 мкСм/см.

Для танковых Пк максимально допустимый объем водорастворимых солей на стали составляет 60 мг/м² хлорида, определенного по методу Брестле (ISO 8502-6).

Поверхность изделий подлежащих защите лакокрасочными материалами должна быть очищена до степени не ниже «2,5».

Методы контроля очищенной поверхности перед окраской регламентирует ИСО 8502.
ИСО 8502-1 устанавливает метод определения на очищенной поверхности растворимых продуктов коррозии с помощью индикаторной ленты.
ИСО 8502-2 устанавливает метод лабораторного анализа хлоридов в воде, собранной после промывки очищенной поверхности размером 250×100мм.
ИСО 8502-3 устанавливает метод оценки контроля запыленности поверхности с помощью липкой ленты. Запыленность поверхности оценивают в баллах согласно рисунку.
ИСО 8502-4 устанавливает методику оценки вероятности конденсации влаги на очищенной поверхности.
ИСО 8502-5 устанавливает метод определения хлоридов с помощью индикаторной трубки.
ИСО 8502-6 приводит метод Брестле по отбору растворимых загрязнений с очищенной поверхности.

Перед покраской любая металлическая поверхность должна быть тщательно обработана. Существует множество технологий, позволяющих осуществить этот процесс наиболее эффективно. Но главной проблемой при его реализации является наличие на металле коррозионных последствий, а именно ржавчины.

На металлической поверхности металла бывают разных видов. К ним относятся:

  • Пятна коррозионного происхождения, имеющие достаточно большую поверхность покрытия без глубинных проникновений.
  • Коррозионные точки, наоборот, не распространяющиеся на большую площадь поверхности металла, но глубоко проникающие внутрь.
  • Коррозионные процессы, происходящие под поверхностным покрытием (например, краской). Краска в процессе интенсификации коррозии может иметь вспученный вид, но бывают случаи, когда только после окончательного разрушения металла можно визуально зафиксировать очаг поражения.

Существуют следующие виды удаления ржавчины и подготовки материала к последующей обработке:

  • термический;
  • химический;
  • механический.

В результате термической обработки металлической поверхности металла, для которой применяется специальная кислородно-ацетиленовая горелка, уничтожается почти вся прокатная окалина. Недостаток этого метода заключается в том, что вот как раз ржавчина посредством этого способа удаляется не в полном объеме. Именно по этой причине подобная технология практически не применятся при проведении покрасочных работ.

Более эффективным методом обработки металла является использование химических веществ. В этих целях применяют, как правило, наиболее активные элементы. Химические средства, которые удаляют ржавчину с обрабатываемого объекта, подразделяются на следующие виды:

  1. Смываемые вещества. При их применении необходимо учитывать, что соприкасаясь с водой, они способны спровоцировать новые коррозионные процессы. Чтобы предотвратить появление ржавчины, обработанная химическим составом металлическая поверхность, должна быть подвергнута тщательной просушке и покрыта антикоррозионными средствами.
  2. Несмываемые вещества. Их в профессиональной сфере называют грунт-преобразователями. Использование этого метода позволяет преобразовать ржавчину на металле в грунт, который является защитным слоем. Хотя специалисты не могут эту структуру в полной мере назвать грунтом, тем не менее, она не требует дальнейшей обработки в виде промывки, так как в процессе не присутствует непосредственный контакт с водой.

На практике для снятия ржавчины используют следующие химические вещества:

  • 5%-ный водный раствор соляной и серной кислоты. При его использовании, в обязательном порядке, необходимо добавлять вещество, замедляющее активность химического процесса (ингибитор). Как правило, применяют уротропин (0,5 г. на 1 литр раствора). В случае отсутствия ингибитора растворится не только ржавчина, но и сам металл.
  • Ортофосфорная кислота. В результате нанесения на металлическую поверхность этого вещества (15-30% раствор) вся ржавчина превращается в твердую структуру. Такой результат получается из-за того, что в результате химической реакции образуется ортофосфат железа, который и является своеобразным защитным слоем. Чтобы процесс был более эффективным, следует добавлять винную кислоту (15 мл. на 1 литр) или бутиловый спирт (4 мл. на 1 литр).
  • Вазелиновое масло (100 мл.) и молочная кислота (50 г.). Этой специальной смесью покрывают металлические поверхности с повышенным содержанием ржавчины. За счет присутствия в растворе кислоты ржавчина превращается в соль (лактат железа), которая растворяется в вазелиновом масле.

Тем не менее, самым эффективным методом зачистки ржавых металлических поверхностей является ее механическая обработка. Этот процесс, как правило, осуществляется ручным способом или с применением вспомогательного механического инструмента.

В современной практике существуют следующие механические методы удаления ржавчины с поверхности металла:

  1. Очистка с помощью щеток, изготовленных из проволок. Этот процесс осуществляется вручную. Он используется в местах, покрытых ржавчиной в большом количестве, а также при обработке сварных соединений и швов. Качество такой зачистки невысокое: остается окалина, а также присутствует много пыли.
  2. Обработка металлической поверхности металла с помощью абразивного инструмента. Как правило, используются шлифовальные диски. При применении инструмента высокого качества достигается практически 100% — ная эффективность. Однако и у этого метода имеются серьезные недостатки. К ним относятся: высокие требования к профессиональным качествам работника, а также большой расход материалов достаточно высокого качества.
  3. Обработка металлической ржавчины с помощью пескоструйного устройства. Этот метод предполагает нагнетание в зону поражения коррозионными процессами песка, выпущенного под напором. Установка, используемая в этих целях, имеет достаточно простую конструкцию и состоит из пистолета (пескоструйный), резервуара с песком и компрессора. Для устройства применяется речной или строительный песок, но обязательно в просушенном виде. Иногда этот материал используется вторично, но необходимо учитывать, что эффективность антикоррозийной обработки в этом случае уменьшается в разы. При этом количество пыли во столько же раз увеличивается. Этот метод особенно эффективен для зачистки от ржавчины мест, которые невозможно обработать наждачным инструментом или абразивными дисками. Кроме того, после использования подобной технологии поверхность металла очищается практически от всего нагара, старой краски и окалин.
  4. Водопескоструйная обработка металла (гидроабразивная). Металлическая поверхность подвергается одновременному воздействию водной струи и абразивного инструмента. Этот метод является промышленным. Отсутствие мобильности является одним из его недостатков. Гидроабразивный способ удаления коррозионных проявлений на металле осуществляется в трех режимах, каждый из которых имеет свои достоинства и недостатки. Они функционируют под сверхвысоким, высоким и низким давлением.