Технология конструкционных материалов (ткм). Классификация металлов. Характеристика металлов и области применения

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Муниципальное общеобразовательное учреждение средняя Городищенская школа №2

Реферат по химии на тему

Работу выполнила

ученица средней школы №2

Яблочкина Екатерина

Городище 2011

  • Введение
  • Сплав
  • Классификация сплавов
  • Свойства сплавов
  • Физические свойства сплавов
  • Получение сплавов
  • ЭЛЕМЕНТЫ ХИМИЧЕСКИ Е
  • Сплавы золота
  • Заключение
  • ИспользУемая литература и сайты
  • Введение
  • Древние мастера по металлу не оставили описаний приемов обработки и составов сплавов, применявшихся для изготовления разных предметов. Такая литература появляется только в средневековье, но в ней названия сплавов и терминология не всегда поддаются расшифровке, поэтому источником сведений являются исключительно сами вещи. Существует множество работ, посвящённых результатам исследований древних предметов. Из них мы узнаем, что первое появление изделий из меди археологи относят к VII тыс. до н.э. Это были кованые предметы из самородной меди. Затем появляется металлургическая медь и сплавы меди с другими металлами. На протяжении нескольких тысячелетий в основном из меди и ее сплавов изготавливались различные предметы: орудия труда, оружие, украшения и зеркала, посуда, монеты. Составы древних сплавов весьма разнообразны, в литературе их условно называют бронза. К наиболее ранним относятся мышьяковистые и оловянистые бронзы. Кроме олова и мышьяка в древних сплавах часто присутствует свинец, цинк, сурьма, железо и другие элементы в виде микропримесей, которые попадали в металл с рудой. Состав сплава подбирался весьма рационально в зависимости от функционального назначения предмета и используемой техники изготовления. Так, для литья художественных изделий был выбран рецепт тройного сплава медь-олово-свинец, применявшийся в античной Греции, в Римской империи, на Ближнем и Среднем Востоке, в Индии; в Китае бронза была одним из самых распространенных сплавов. На литых предметах из такой бронзы со временем образуется красивая патина, которая в некоторых случаях сохраняется и на археологических предметах.

Сплав

Сплавы, макроскопические однородные системы, состоящие из двух или более металлов (реже- металлов и неметаллов) с характерными металлическими свойствами. В более широком смысле сплавы -любые однородные системы, полученные сплавлением металлов, неметаллов, неорганических соединений и т.д.. Многие сплавы (например: бронза, сталь, чугун) были известны в глубокой древности и уже тогда имели обширное практическое применение. Техническое значение металлических сплавов объясняется тем, что многие их свойства (прочность, твердость, электрическое сопротивление) гораздо выше, чем у составляющих их чистых металлов.

Называют сплавы исходя из названия элемента, содержащегося в них в наибольшем количестве (основной элемент, основа), например: сплав железа, сплав алюминия. Элементы, вводимые в сплав для улучшения их свойств, называются легирующими, а сам процесс - легированием.

Легирование -- процесс введения в расплав дополнительных элементов, улучшающих механические, физические и химические свойства основного материала. Легирование является обобщающим понятием ряда технологических процедур, проводимых на различных этапах получения металлического материала с целями повышения качества металлургической продукции.

Классификация сплавов

По характеру металла- основы, различают черные сплавы (основа - железо (Fe), цветные сплавы (основа - цветные металлы), сплавы редких металлов, сплавы радиоактивных металлов.

ь По числу компонентов сплавы делят на двойные, тройные и т.д.;

ь по структуре - на гомогенные (однородные) и гетерогенные (смеси), состоящие из нескольких;

ь по характерным свойствам - на тугоплавкие, легкоплавкие, высокопрочные, жаропрочные, твердые, антифрикционные, коррозионностойкие;

ь сплавы со специальными свойствами и другие.

ь По технологии производства выделяют литейные (для изготовления деталей методом литья) и деформируемые (подвергаемые ковке, штамповке, прокатке, прессованию и другим видам обработки давлением).

Свойства сплавов

Свойства сплавов зависят не только от состава, но и от способов их тепловой и механической обработки: закалки, ковки и др. Вплоть до конца XIX века поиск новых практических полезных сплавов веди методом проб и ошибок. Только на рубеже XIX- XX вв. результате фундаментальных открытий в области физической химии возникло учение о закономерности между свойствами металлов и свойствами образованных из них сплавов, о влиянии на них механических, тепловых и других воздействий.

В металловедение различают три типа сплавов:

ь твердый раствор (если атомы, входящие в состав сплава элементов незначительно отличаются строением и размером, они могут образовывать общую кристаллическую решетку);

ь механическую смесь (если каждый элемент сплава кристаллизуется самостоятельно);

ь химическое соединение (если элементы сплава химически взаимодействуют, образуя новое вещество).

Физические свойства сплавов

Механические свойства металлов и сплавов

К основным механическим свойствам относятся прочность, вязкость, пластичность, твердость, выносливость, ползучесть, износостойкость. Они являются главными характеристиками металла или сплава.

Физические свойства металлов и сплавов

Физические свойства металлов и сплавов определяются удельным весом, к оэффициентами линейного и объемного расширения, электропроводностью, теплопроводностью, температурой плавления и т. д.

Химическая стойкость металлов и сплавов

Химическую стойкость металлов и сплавов определяют по их способности сопротивляться химическому воздействию различных агрессивных сред. Эти свойства имеют большое значение для машиностроения и с ними приходится считаться при конструировании машин и деталей. Характерным примером химического воздействия среды является коррозия (окисление металлов).

Разрушение металлов от коррозии наносит промышленности огромный ущерб, выражающийся ежегодной потерей миллионов тонн металла.

Для устранения таких больших потерь в машиностроении применяют покрытие деталей лаками, красками, химически стойкими металлами, окисными пленками.

В отдельных случаях применяют различные сплавы, имеющие высокую химическую стойкость, например, нержавеющие чугуны, нержавеющие стали и ряд химически стойких сплавов на основе меди и никеля. Широкое применение начинает находить титан.

Технологические свойства металлов

Технологические свойства металлов и сплавов характеризуются их спосо бностью поддаваться различным методам горячей и холодной обработки (легко плавиться и заполнять форму, коваться, свариваться, обрабатываться режущими инструментами и т. д.). В связи с этим их подразделяют на литейные

Литейные свойства металлов и сплавов

Литейные свойства металлов и сплавов определяются жидко-текучестью, усадкой и склонностью к ликвации. Жидкотекучестью - способность сплава заполнять литейную форму. Под усадкой подразумевают сокращение объема и размеров металла отливки при затвердевании и последующем охлаждении. Ликвация- процесс образования неоднородности химического состава сплава в разных частях отливки при ее затвердевании.

Ковкость металла

Ковкостью металла- способность деформироваться при наименьшем сопр отивлении и принимать необходимую форму под влиянием внешних усилий без нарушения целостности. Металлы могут обладать ковкостью как в холодном, так и в нагретом состоянии. Хорошей ковкостью обладает сталь в нагретом состоянии. Латунь однофазная и алюминиевые сплавы обладают хорошей ковкостью в холодном состоянии. Пониженной ковкостью отличается бронза. Чугуны практически не обладают ковкостью.

Свариваемость металла

Свариваемостью металла - способность создавать прочные соединения металлических деталей методами сварки. Хорошо сваривается малоуглеродистая сталь, значительно хуже чугун, медные и алюминиевые сплавы.

Получение сплавов

Рассмотрим процесс получения сплавов на примере чугуна и стали.

Получение чугуна и стали. Технологический процесс получения черных металлов включает выплавку чугуна из железных руд с последующей переработкой его в сталь.

Основным способом получения чугуна является доменный. Доменный процесс состоит из трех стадий: восстановление железа из оксидов, содержащихся в руде, науглероживание железа и шлакообразование. Сырьевыми материалами служат железные руды, топливо и флюсы.

Железные руды до плавки обычно подвергают предварительной подготовке: дроблению, обогащению и окускованию. Обогащают измельченную руду часто магнитной сепарацией. Для удаления песчаных и глинистых частиц промывают водой. Окускование мелких и пылеватых руд производится агломерацией -- путем спекания на колосниковых решетках агломерационных машин или окатывания в грануляторе с последующей сушкой и обжигом. Основным топливом при плавке чугуна служит кокс, который является источником тепла и непосредственно участвует в восстановлении и науглероживании железа. Флюсы (известняки, доломиты или песчаники) применяют для снижения температуры плавления пустой породы и связывания ее с золой топлива в шлак.

Доменная печь представляет собой вертикальную шахту высотой до 35 м и более со стенами из огнеупорного кирпича, заключенными в стальной кожух. Сверху в печь послойно загружают подготовленные сырьевые материалы. В результате горения кокса за счет кислорода воздуха, нагнетаемого в нижнюю часть печи, образуется оксид углерода, который восстанавливает железо из руды и может взаимодействовать с ним, при этом образуется карбид Ре3С -- цементит.

Одновременно с восстановлением железа восстанавливаются кремний, фосфор, марганец и другие примеси.

Расплавленные при температуре 1380--1420°С чугун и шлак выпускают через летки. Чугун разливается в формы, а шлак идет на переработку. В доменных печах выплавляют передельный чугун, идущий на переработку в сталь, литейный чугун, используемый для получения разнообразных чугунных изделий, и специальные чугуны (ферросилиций, ферромарганец), применяемые в производстве стали как раскислители или легирующие добавки.

Сталь получают из передельного чугуна окислением с помощью мартеновского, конвертерного и электроплавильного способов. Основным способом производства стали в СССР и других странах мира является мартеновский способ, но в последние годы широкое распространение находит кислородно-конвертерный способ, обладающий существенными технико-экономическими преимуществами.

При мартеновском способе сталь получают в мартеновских печах, в плавильном пространстве которых сжигается газ или мазут, а в специальных камерах -- регенераторах подготавливаются поступающие в печь воздух и газообразное топливо за счет аккумулированного тепла отходящих продуктов горения. Шихта включает чугун в чушках и металлический лом -- скрап или жидкий чугун, скрап и железную руду. Процесс получения стали заключается в плавлении шихты, при котором образуется большое количество закиси железа, окислении углерода и других примесей закисью железа и раскислении -- восстановлении железа из закиси добавками ферросилиция, ферромарганца или алюминия.

Элементы химические

Многие металлы, например магний, выпускают высокочистыми, чтобы можно было точно знать состав изготавливаемых из него сплавов. Число металлических сплавов, применяемых в наши дни, очень велико и непрерывно растет. Их принято разделять на две большие категории: сплавы на основе железа и сплавы цветных металлов. Ниже перечисляются наиболее важные сплавы промышленного значения и указываются основные области их применения.

Сталь. Сплавы железа с углеродом, содержащие его до 2%, называются сталями. В состав легированных сталей входят и другие элементы - хром, ванадий, никель. Сталей производится гораздо больше, чем каких-либо других металлов и сплавов, и все виды их возможных применений трудно было бы перечислить. Малоуглеродистая сталь (менее 0,25% углерода) в больших количествах потребляется в качестве конструкционного материала, а сталь с более высоким содержанием углерода (более 0,55%) идет на изготовление таких низкоскоростных режущих инструментов, как бритвенные лезвия и сверла. Легированные стали находят применение в машиностроении всех видов и в производстве быстрорежущих инструментов.

Чугун. Чугуном называется сплав железа с 2-4% углерода. Важным компонентом чугуна является также кремний. Из чугуна можно отливать самые разнообразные и очень полезные изделия, например крышки для люков, трубопроводную арматуру, блоки цилиндров двигателей. В правильно выполненных отливках достигаются хорошие механические свойства материала.

Сплавы на основе меди. В основном это латуни, т.е. медные сплавы, содержащие от 5 до 45% цинка. Латунь с содержанием от 5 до 20% цинка называется красной (томпаком), а с содержанием 20-36% Zn - желтой (альфа-латунью). Латуни применяются в производстве различных мелких деталей, где требуются хорошая обрабатываемость и формуемость. Сплавы меди с оловом, кремнием, алюминием или бериллием называются бронзами. Например, сплав меди с кремнием носит название кремнистой бронзы. Фосфористая бронза (медь с 5% олова и следовыми количествами фосфора) обладает высокой прочностью и применяется для изготовления пружин и мембран.

Свинцовые сплавы. Обычный припой (третник) представляет собой сплав примерно одной части свинца с двумя частями олова. Он широко применяется для соединения (пайки) трубопроводов и электропроводов. Из сурьмяно-свинцовых сплавов делают оболочки телефонных кабелей и пластины аккумуляторов. Пьютер, из которого ранее отливали столовые приборы (вилки, ножи, тарелки), содержит 85-90% олова (остальное - свинец). Подшипниковые сплавы на основе свинца, называемые баббитами, обычно содержат олово, сурьму и мышьяк.

Легкие сплавы. Современная промышленность нуждается в легких сплавах высокой прочности, обладающих хорошими высокотемпературными механическими свойствами. Основными металлами легких сплавов служат алюминий, магний, титан и бериллий. Однако сплавы на основе алюминия и магния не могут применяться в условиях высокой температуры и в агрессивных средах.

Алюминиевые сплавы. К ним относятся литейные сплавы (Al - Si), сплавы для литья под давлением (Al - Mg) и самозакаливающиеся сплавы повышенной прочности (Al - Cu). Алюминиевые сплавы экономичны, легкодоступны, прочны при низких температурах и легко обрабатываемы (они легко куются, штампуются, пригодны для глубокой вытяжки, волочения, литья, хорошо свариваются и обрабатываются на металлорежущих станках). К сожалению, механические свойства всех алюминиевых сплавов начинают заметно ухудшаться при температурах выше приблизительно 175° С. Но благодаря образованию защитной оксидной пленки они проявляют хорошую коррозионную стойкость в большинстве обычных агрессивных сред. Эти сплавы хорошо проводят электричество и тепло, обладают высокой отражательной способностью, немагнитны, безвредны в контакте с пищевыми продуктами (поскольку продукты коррозии бесцветны, не имеют вкуса и нетоксичны), взрывобезопасны (поскольку не дают искр) и хорошо поглощают ударные нагрузки. Благодаря такому сочетанию свойств алюминиевые сплавы служат хорошими материалами для легких поршней, применяются в вагоно- , автомобиле- и самолетостроении, в пищевой промышленности, в качестве архитектурно-отделочных материалов, в производстве осветительных отражателей, технологических и бытовых кабелепроводов, при прокладке высоковольтных линий электропередачи. Примесь железа, от которой трудно избавиться, повышает прочность алюминия при высоких температурах, но снижает коррозионную стойкость и пластичность при комнатной температуре. Кобальт, хром и марганец ослабляют охрупчивающее действие железа и повышают коррозионную стойкость. При добавлении лития к алюминию повышаются модуль упругости и прочность, что делает такой сплав весьма привлекательным для авиакосмической промышленности. К сожалению, при своем превосходном отношении предела прочности к массе (удельной прочности) сплавы алюминия с литием обладают низкой пластичностью.

Магниевые сплавы. Магниевые сплавы легки, характеризуются высокой удельной прочностью, а также хорошими литейными свойствами и превосходно обрабатываются резанием. Поэтому они применяются для изготовления деталей ракет и авиационных двигателей, корпусов для автомобильной оснастки, колес, бензобаков, портативных столов и т.п. Некоторые магниевые сплавы, обладающие высоким коэффициентом вязкостного демпфирования, идут на изготовление движущихся частей машин и элементов конструкции, работающих в условиях нежелательных вибраций. Магниевые сплавы довольно мягки, плохо сопротивляются износу и не очень пластичны. Они легко формуются при повышенных температурах, пригодны для электродуговой, газовой и контактной сварки, а также могут соединяться пайкой (твердым), болтами, заклепками и клеями. Такие сплавы не отличаются особой коррозионной стойкостью по отношению к большинству кислот, пресной и соленой воде, но стабильны на воздухе. От коррозии их обычно защищают поверхностным покрытием - хромовым травлением, дихроматной обработкой, анодированием. Магниевым сплавам можно также придать блестящую поверхность либо плакировать медью, никелем и хромом, нанеся предварительно покрытие погружением в расплавленный цинк. Анодирование магниевых сплавов повышает их поверхностную твердость и стойкость к истиранию. Магний - металл химически активный, а потому необходимо принимать меры, предотвращающие возгорание стружки и свариваемых деталей из магниевых сплавов.

Титановые сплавы. Титановые сплавы превосходят как алюминиевые, так и магниевые в отношении предела прочности и модуля упругости. Их плотность больше, чем всех других легких сплавов, но по удельной прочности они уступают только бериллиевым. При достаточно низком содержании углерода, кислорода и азота они довольно пластичны. Электрическая проводимость и коэффициент теплопроводности титановых сплавов малы, они стойки к износу и истиранию, а их усталостная прочность гораздо выше, чем у магниевых сплавов. Предел ползучести некоторых титановых сплавов при умеренных напряжениях (порядка 90 МПа) остается удовлетворительным примерно до 600° C, что значительно выше температуры, допустимой как для алюминиевых, так и для магниевых сплавов. Титановые сплавы достаточно стойки к действию гидроксидов, растворов солей, азотной и некоторых других активных кислот, но не очень стойки к действию галогеноводородных, серной и ортофосфорной кислот. Титановые сплавы ковки до температур около 1150° C. Они допускают электродуговую сварку в атмосфере инертного газа (аргона или гелия), точечную и роликовую (шовную) сварку. Обработке резанием они не очень поддаются (схватывание режущего инструмента). Плавка титановых сплавов должна производиться в вакууме или контролируемой атмосфере во избежание загрязнения примесями кислорода или азота, вызывающими их охрупчивание. Титановые сплавы применяются в авиационной и космической промышленности для изготовления деталей, работающих при повышенных температурах (150-430° C), а также в некоторых химических аппаратах специального назначения. Из титанованадиевых сплавов изготавливается легкая броня для кабин боевых самолетов. Титаналюминиевованадиевый сплав - основной титановый сплав для реактивных двигателей и корпусов летательных аппаратов. В табл. 3 приведены характеристики специальных сплавов, а в табл. 4 представлены основные элементы, добавляемые к алюминию, магнию и титану, с указанием получаемых при этом свойств.

Бериллиевые сплавы. Пластичный бериллиевый сплав можно получить, например, вкрапляя хрупкие зерна бериллия в мягкую пластичную матрицу, такую, как серебро. Сплав этого состава удалось холодной прокаткой довести до толщины, составляющей 17% первоначальной. Бериллий превосходит все известные металлы по удельной прочности. В сочетании с низкой плотностью это делает бериллий пригодным для устройств систем наведения ракет. Модуль упругости бериллия больше, чем у стали, и бериллиевые бронзы применяются для изготовления пружин и электрических контактов. Чистый бериллий используется как замедлитель и отражатель нейтронов в ядерных реакторах. Благодаря образованию защитных оксидных слоев он устойчив на воздухе при высоких температурах. Главная трудность, связанная с бериллием, - его токсичность. Он может вызывать серьезные заболевания органов дыхания и дерматит.

Сплавы золота

Золото - благородный металл желтого цвета, мягкий и достаточно тяжелый. Содержится золото как в земной коре, так и в воде, и, хотя содержание его в земле достаточно низкое (3 мкг/кг), но весьма многочисленны участки, сильно обогащенные данным металлом. Такие участки, являющиеся первичным месторождением золота, получили название - россыпи.

Из физических и химических свойств золота следует отметить, в первую очередь, его исключительно высокую теплопроводность и низкое электрическое сопротивление. При нормальных условиях оно не взаимодействует с большинством кислот и не образует оксидов, не окисляется на воздухе и устойчиво к воздействию влаги, щелочей и солей, благодаря чему было отнесено к благородным металлам. Золото очень ковко и пластично. Из кусочка золота массой в один грамм можно вытянуть проволоку длиной в три с половиной километра или изготовить золотую фольгу в 500 раз тоньше человеческого волоса. Золото - очень тяжёлый металл, что является большим плюсом в его добыче. Плотность его высока - 19,3 г/см3, твёрдость по Бринеллю - 20. Золото также является самым инертным металлом, но, когда была открыта способность царской водки (смесь соляной и азотной кислот в соотношении 3/1) растворять золото, уверенность в его инертности была поколеблена. Плавится металл при весьма высокой температуре - 1063°С. Растворяется в горячей селеновой кислоте. Данные физические и химические свойства золота широко используются для его получения.

Добывается золото чаще всего методом промывки, что основано на его высокой плотности (другие металлы, плотностью меньше золота, в потоке воды вымываются). Но природное золото редко бывает чистым, в нем содержатся серебро, медь и многие другие элементы, поэтому после промывки все золото подвергается глубокой очистке - аффинажу. В России чистота золота измеряется пробой.

Существует сплавы золота, которые становятся очень популярными в настоящее время.

Розовое золото

Розовое золото -- это сплав чистого золота и меди; ювелирный сплав необыкновенно нежного оттенка.

Украшения из розового сплава становятся все популярней, все чаще встречаются кольца и кулоны.

Зеленое (оливковое) золото

Зеленое (оливковое) золото можно получить как сплав золота с калием.

Такие соединения еще называют металлидами.

Вообще металлиды -- это соединения золота с алюминием (фиолетовое золото), рубидием (темно-зеленое), калием (фиолетовое и оливковое), индием (голубое золото). Такие сплавы очень красивы и экзотичны, но при этом хрупки и не пластичны. Как драгоценный металл их обрабатывать нельзя. Но иногда такие ювелирные сплавы-металлиды используются как вставки в украшения, как камни.

Кстати, иногда зеленое золото еще получают при сплавлении чистого золота с серебром. Небольшое включение серебра в составе ювелирного сплава даст зеленоватый цвет, чуть большая пропорция сделает золото желтовато-зеленым, еще увеличив содержание серебра, получаем желто-белый оттенок, и, наконец, совершенно белый цвет.

Голубое золото

Это сплав чистого золота с индием. Но такой ювелирный сплав -- также металлид, он нестойкий и как обычное золото использоваться не может.

Только как вставки в украшения, т.е. как камни.

Еще золото «голубеет», если оно покрыто родием.

Или если это детище аргентинского ювелира Антониасси. До сих пор загадка, как ему удалось получить голубой сплав с чуть ли не 958 пробой (в сплаве доля чистого золота 90%). Ювелир не торопится раскрывать свои секреты.

Синее золото

Синее золото -- это сплав золота с железом и хромом. Также как зеленое и фиолетовое, синее золото можно использовать только как вставки в украшения.

Сам по себе синий сплав хрупок и сделать драгоценность только из него не получится.

Фиолетовое золото

По сути это сплав золота с алюминием. Такому золоту можно «присудить» 750 пробу (содержание золота в сплаве даже больше чем 75%).

Другой вид фиолетового золота -- это сплав золота с калием.

Фиолетовый ювелирный сплав прекрасен. Но, к сожалению, непрочен и непластичен. Иногда его можно встретить в украшениях в виде вставок, как будто это драгоценный камень, а не металл.

Коричневое золото

Коричневое золото - золото 585 или 750 пробы, с большей долей меди в лигатуре (добавке примесей к чистому золоту в сплаве). Такое золото ювелиры подвергают специальной химической обработке.

Черное золото

Черное золото -- необыкновенно изысканный металл с глубоким и мягким цветом. Есть несколько способов получения черного золота.

Это и сплавление с кобальтом и хромом с окислением при высокой температуре, и покрытие черным родием или аморфным углеродом…

сплав чугун сталь легирование золото

Заключение

Окружающие нас металлические предметы редко состоят из чистых металлов. Только алюминиевые кастрюли или медная проволока имеют чистоту около 99,9%. В большинстве же других случаев люди имеют дело со сплавами. Так, различные виды железа и стали содержат наряду с металлическими добавками незначительные количества углерода, которые оказывают решающее влияние на механическое и термическое поведение сплавов. Все сплавы имеют специальную маркировку, т.к. сплавы с одним названием (например, латунь) могут иметь разные массовые доли других металлов.

Используемая литература и сайты

ь Химия для любознательных - Э. Гроссе.

ь Советский энциклопедический словарь. - М.: Советская энциклопедия, 1983.

o Краткая химическая энциклопедия под редакцией И.А. Кнуянц и др. Советская энциклопедия, 1961-1967, Т.2.

o Энциклопедический словарь юного химика, составленный Крицманом В.А и Станцо В.В. Издательство «Педагогика»,1982 год.

ь Большая энциклопедия современного школьника.

ь Общая химия. Глинка Н.Л., СССР, 1985 год

o Сайт Википедия

ь www.erudition.ru- доклад «Сплавы»

ь dic.academic.ru- сайт «Академик», тема «Сплавы»

ь www.chemport.ru- сплавы

Размещено на Allbest.ru

Подобные документы

    История возникновения сплавов. Коррозионная стойкость, литейные свойства, жаропрочность и электрическое сопротивление сплавов. Основные свойства сплавов. Раствор одного металла в другом и механическая смесь металлов. Классификация и группы сплавов.

    презентация , добавлен 30.09.2011

    Физические свойства металлов и сплавов. Химические свойства металлов и сплавов. Сплавы. Требования к сплавам и виды сплавов. Методы испытания полиграфических сплавов. Металлы и сплавы, применяемые в полиграфии.

    реферат , добавлен 06.09.2006

    Классификация и общая характеристика медно-никелевых сплавов, влияние примесей на их свойства. Коррозионное поведение медно-никелевых сплавов. Термодинамическое моделирование свойств твёрдых металлических растворов. Энергетические параметры теории.

    дипломная работа , добавлен 13.03.2011

    Основные деформируемые алюминиевые сплавы. Механические свойства силуминов. Маркировка литейных алюминиевых сплавов. Кремний как основной легирующий элемент в литейных алюминиевых силуминах. Типичные механические свойства термически неупрочняемых сплавов.

    реферат , добавлен 08.01.2010

    Уменьшение скорости коррозии как метод противокоррозийной защиты металлов и сплавов. Классификация защитных покрытий (металлические, гальванические, металлизация напылением, неметаллические покрытия, органические, ингибиторная, кислородная и другие).

    курсовая работа , добавлен 16.11.2009

    Анодное оксидирование алюминия и его сплавов. Закономерности анодного поведения алюминия и его сплавов в растворах кислот на начальных стадиях формирования АОП и вторичных процессов, оказывающих влияние на структуру и свойства формирующегося слоя оксида.

    Кристаллическая структура ниобия, золота и их сплавов; количество и положение междоузлий. Диаграмма состояния системы Nb-V; график зависимости периода кристаллической решетки от состава сплава; стереографические проекции; кристаллографические расчеты.

    курсовая работа , добавлен 09.05.2013

    Общие представление о коррозии металлов. Поведение титана и его сплавов различных агрессивных средах. Влияние легирующих элементов в титане на коррозионную стойкость. Электрохимическая коррозия. Особенности взаимодействия титана с воздухом.

    реферат , добавлен 03.12.2006

    Химическая характеристика и свойства металлов, их расположение в периодической системе элементов. Классификация металлов по различным признакам. Стоимость металла как фактор возможности и целесообразности его применения. Наиболее распространенные сплавы.

    контрольная работа , добавлен 20.08.2009

    Общая характеристика и свойства меди. Рассмотрение основных методов получения меди из руд и минералов. Определение понятия сплавов. Изучение внешних характеристик, а также основных особенностей латуни, бронзы, медно-никелевых сплавов, мельхиора.

Алюминиевые сплавы имеют более широкое применение в качестве конструкционного материала, чем технический алюминий. Основными легирующими элементами алюминиевых сплавов являются Си, Zn, Mg, Мп, Si, Ni, Fe. Эти элементы образуют с алюминием твердые растворы ограниченной растворимости, формируют упрочняющие зоны и промежуточные фазы с алюминием и между собой - Ф (CuAl2, Mg2Si, Al2CuMg, Al6CuMg4 и др.).

>

Мп и Mg оказывают положительное влияние на коррозионную стойкость, однако снижают тепло- и электропроводность алюминиевых сплавов. В литейных сплавах основным легирующим элементом выступает кремний, образующий с алюминием эвтектику. Ni, Ti, Cr, Fc образуют стабильные сложнолстироваиныс упрочняющие фазы, тормозят диффузионные процессы и тем самым повышают жаропрочность алюминиевых сплавов. Литий в сплавах на основе алюминия повышает их модуль упругости. Алюминиевые сплавы классифицируют по технологии изготовления полуфабрикатов и изделий из них, по способу упрочняться термической обработкой и свойствам (табл. 9.3).

Таблица 93

Классификация алюминиевых сплавов

Марка сплава

Упрочня- емость/ нсупрочня- емость (+/-) термической обработкой

Основные характеристики группы сплавов

нормируемые сплавы

Коррозионностойкие, повышенной пластич- ности

АМг5, АМгб

АВ, АД31, АД33

Пластичные при комнатной температуре

Среднепрочные

Высокопрочные

Малой плотности, высокомодульные

Ковочные, пластичные при повышенных температурах

Al-Си-Mg-Fe-Ni

Жаропрочные

Литейные сплавы

Герметичные

АК9ч (АЛ4), АК7ч (АЛ9), АК8л (АЛ34)

Высокопрочные и жаро- прочные

АМгЗМц (АЛ28)

Коррозионностойкие

АЦ4Мг (АЛ 24)

Спеченные сплавы

Высокомодульные с пониженной плотностью

С низким коэффициентом л и ней ного рас ш и ре н и я

Высокопрочные

САП-1, САП-2

Жаропрочные

Al-Cu-Mg- A1 2 0 3

Алюминиевые сплавы подразделяют в основном на деформируемые и литейные, а также спеченные алюминиевые порошки (САП) и сплавы (САС) и композиционные, при производстве которых широко используются процессы пластической деформации и литья.

В соответствии с диаграммой состояния «алюминий - легирующий элемент» (рис. 9.2) сплавы, расположенные левее точки Е, при высокой температуре имеют однофазную структуру а-твердого раствора, низкую прочность и высокую пластичность. Поэтому эти сплавы легко обрабатываются давлением и относятся к категории деформируемых сплавов. Сплавы литейные по содержанию легирующих элементов расположены правее точки?, содержат в структуре эвтектику и обладают высокими литейными свойствами: жид- котекучестыо и высокой концентрацией литейной пористости. Сплавы эвтектического состава кристаллизуются при постоянной

Рис. 9.2.

Д - деформируемые сплавы; Л - литейные сплавы; I - сплавы, не упрочняемые термической обработкой; II - сплавы, упрочняемые термической обработкой; Ф -

промежуточная фаза температуре, отличаются наиболее высокой жидкотекучестыо, пониженными механическими свойствами из-за наличия в их структуре большого количества эвтектической составляющей.

Точка М на диаграмме, соответствующая пределу насыщения твердого раствора при комнатной температуре, является границей между сплавами, не упрочняемыми и упрочняемыми термической обработкой.

Упрочняющая термическая обработка алюминиевых сплавов сводится к закалке с 435-545°С, естественному старению при 20°С или искусственному при 75-225°С в течение 3-48 ч. Не упрочняемые сплавы подвергают гомогенизационому (480-530°С, 6-36 ч), рекристализационному (300-500°С, 0,5-3 ч) и (закаченные и состаренные сплавы) разупрочняющему (350-430°С, 1-2 ч) отжигу.

Маркировка алюминиевых сплавов. Для маркировки алюминиевых сплавов принята смешанная буквенная и буквенно-цифровая система. Деформируемые сплавы обозначают буквами АД, Д, АК, AM, АВ, литейные - АЛ. Буквы АД в начале марки означают алюминий технический, последующая цифра указывает на чистоту алюминия. Буквой Д обозначают деформируемые сплавы системы (А1-Си-Mg) - дуралюмины, буквами АК - алюминиевый ковочный сплав. Буквы АВ обозначают сплав алюминия с магнием и кремнием - авиаль. Буквы АМг и АМц обозначают сплав алюминия с магнием (Мг) и с марганцем (Мц), цифры, следующие за буквами (АМг1, АМг5, АМгб), соответствуют примерному содержанию магния в сплавах. Буква В в начале марки означает высокопрочный алюминиевый сплав.

В настоящее время водится единая четырехцифровая маркировка алюминиевых сплавов (рис. 9.3). Первая цифра обозначает основу всех сплавов. Алюминию присвоена цифра один. Вторая цифра соответствует главному легирующему элементу или группе главных легирующих элементов. Третья цифра или третья со второй повторяют старую маркировку. Четвертая цифра указывает, что сплав деформируемый, если она нечетная или 0. Опытные сплавы


Рис. 93. Цифровая маркировка алюминиевых сплавов обозначают цифрой 0, стоящей впереди единицы (пятизначная маркировка допустима только для опытных сплавов). Цифра 0 исключается из пятизначной маркировки, когда сплав становиться серийным.

Буквенно-цифровая маркировка литейных алюминиевых сплавов (по ГОСТ 1583-93) базируется на принципе маркировки легированных сталей.

Первая буква А указывает основу сплава - А1, последующие буквы соответствуют первым буквам названий основных легирующих элементов (К - кремний, М - медь, Мг - магний, Мц - марганец, Н - никель, Ц - цинк). Числа, следующие за буквами, показывают усредненное содержание соответствующего компонента (в % по массе). При содержании в сплаве легирующего элемента меньше 1% буква, обозначающая данный элемент, в маркировке не указывается. Чистота сплавов обозначается буквами, стоящими после маркировки сплава: Ч, ОЧ - соответственно чистый или очень чистый но примесям железа и кремния. ГОСТ 1583-93 предусматривает возможность использования обозначения литейных алюминиевых сплавов буквенно-цифровой маркой с указанием в скобках старой марки (см. табл. 9.3).

Буквенно-цифровая система маркировки технологической обработки качественно отражает механические, химические и другие свойства сплава (табл. 9.4).

Таблица 9.4

Буквенно-цифровая маркировка технологической обработки деформируемых и литейных сплавов

Обои на- чение

деформируемые сплавы

литейные сплавы

Мягкий, отожженный

Модифици рованн ы й

Закаленный и естественно состаренный

Закаленный и искусственно состаренный на максимальную прочность

Искусственно состаренный без предварительной закачки

Закаленный и искусственно состаренный но смягчающему режиму для повышения сопротивления коррозии под напряжением

Закаленный

Закаленный и кратковременно (не полностью) искусственно состаренный

Закаленный и полностью искусственно состаренный

Вид обработки, характеристика свойств материала

деформируемые сплавы

литейные сплавы

Закаченный с последующим стабилизирующим отпуском

Закаленный с последующим смягчающим отпуском

Нагартованный (5-7%)

11олу нагартованный

Усиленно нагартованный (20%)

Закаленный, естественно состаренный и нагартованный

Закаленный, нагартованный и искусственно состаренный

Закаленный, естественно состаренный, повышенной прочности

Горячекатаные (листы, плиты)

Нормальная плакировка

Утолщенная плакировка (8% на сторону)

Деформируемые алюминиевые сплавы. Химический состав и механические свойства деформируемых сплавов приведены в табл. 9.5.

К деформируемым сплавам, не упрочняемым термической обработкой, относятся сплавы на основе систем А1-Мп (АМц) и А1-Mg (АМг), отличающиеся пониженной прочностью, но повышенными пластичностью и коррозионной стойкостью. Сплавы хороню свариваются. Более широкое применение получили сплавы АМг из-за меньшей плотности. Из сплавов изготавливают изделия, получаемые методом глубокой вытяжки и сварки, способные работать в различных корозионно-активных средах (сварные баки, сосуды, трубопроводы для масла и бензина, корпуса, мачты речных судов). Сплавы АВ, АД31, АД 33 системы А1-Mg-Si обладают высокой коррозионной стойкостью, хорошей пластичностью в холодном и горячем состоянии, свариваются с помощью точечной, шовной и аргоно-дуговой сварки. Сплавы удовлетворительно обрабатываются резанием в термообработанном состоянии. Сплавы упрочняют закалкой (510-530°С) и искусственным старением (160-170°С, 12-15 ч). Наиболее высокие показатели прочности после искусственного старения имеет сплав АВ, но он подвержен в этом состоянии межкристаллитной коррозии, которая вызвана выделением кремния по границам зерен при искусственном старении. Сплавы АД31 и АДЗЗ по прочности уступают сплаву АВ, но превосходят

Таблица 9.5

Химический состав и механические свойства деформируемых алюминиевых сплавов

Режим технологической обработки

Механические

свойства

элементы

Li = 2,1 Zr = 0,12

Fe - 1,1 Ti - 0,1

2сч ©° и? pN

Ti = 0,06 Zr - 0,17 V = 0,1 Fe

его по коррозионной стойкости. Сплавы ЛВ, ЛД31, АДЗЗ выпускают в виде листов, труб, прутков, профилей различного сечения и других полуфабрикатов, применяемых для изготовления лопастей винтов вертолетов, рам, корпусов и переборок судов, корпусов электромоторов, сварных баков, трубопроводов.

Дуралюмииы. Сплавы Д1, Д16, Д18, Д19, ВД17 системы А1-Си-Mg отличаются хорошим сочетанием прочности и пластичности. В результате термической обработки (закалки и старения) дуралюмииы упрочняются. Превращения в деформируемых термоупрочняемых сплавах рассмотрим на сплавах алюминия

с медью. Эго допустимо, поскольку легирование их другими элементами (Mg, Мп и др.) наряду с медью или вместо нее не вносит принципиальных изменений.

Из диаграммы Л1-Си (рис. 9.4) следует, что в равновесном состоянии микроструктура сплавов состоит из твердого раствора а (0,2%Си) и включений вторичной фазы CuAl 2 , содержащей около 55,4% Си. При закалке сплавы нагревают до температуры /: :j , обеспечивающей растворение интерметаллида СиА1 2 в алюминии (выше линии предельной растворимости ME на 6-8%) и получение максимально возможной концентрации меди в твердом растворе. В процессе закалки, при быстром охлаждении в воде, медь не выделяется из твердого раствора, и таким образом получают неравновесную структуру однородного пересыщенного твердого раствора меди в алюминии (закалка без полиморфного превращения). В закаленном состоянии сплавы имеют пониженную прочность. Так, сплав Д16 в свежезакаленном состоянии имеет следующие механические свойства: а„ = 24(Н260 МПа, 8 = 22%.

В пересыщенном a-твердом растворе избыточные атомы меди распределены статистически равномерно и стремятся выделиться из него. На этом явлении основан процесс старения. Старение - это термическая обработка, при которой в сплаве после закалки (без полиморфного превращения) происходит распад пересыщенного a-твердого раствора. В зависимости от температурных условий превращения различают естественное старение - без подогрева при температуре 20°С и искусственное старение - с подогревом до температуры 100-200°С (рис. 9.5).

При естес твен пом старении в результате диффузионного перераспределения атомов меди внутри твердого раствора образуются зоны с повышенной концентрацией меди (50-52%) - зоны Гинье - Престона (ГП-I), с тем же порядком расположения атомов, что и в неупорядочном a-твердом растворе. При температурах ниже


Рис. 9.4. Часть диаграммы состояния системы А1-Си и схема изменения структуры дуралюмина (к % Си) после закалки

Продолжительность, сут.

Рис. 95. Изменение прочности дуралюмина (к % Си) при различных температурах старения

нуля зоны ГП-1 не образуются. Зоны ГП-1 представляют собой пластины диаметром 4-10 нм и толщиной 0,5-1 нм. Параметры кристаллической решетки твердого раствора в зонах ГП-1 меньше, чем в обедненном a-твердом растворе (атомный диаметр алюминия - 0,128 нм). Поэтому зоны ГП-1 деформируют a-твердый раствор (рис. 9.6), создают большие напряжения в кристалле и тормозят движение дислокаций, что приводит к упрочнению сплавов. При естественном старении в a-твердом растворе образуются лишь зоны ГП-1.

В процессе искусственного старения диффузия протекает более интенсивно. Искусственное старение происходит постадийно. Первая стадия, как и при естественном старении, сводится к образованию зон ГП-1.

Зоны ГП-1, возникшие при искусственном старении, имеют большие размеры (20 нм при температуре 100°С и 80 нм при температуре 200°С, толщиной от 1 до 4 нм) но сравнению с зонами ГП-1 после естественного старения. Увеличение выдержки при температурах от 100 до 200°С вызывают изменение зон ГП-1 (II стадия)

Рис. 9.6.

Атомы Си; О - атомы А1

и преобразование их в ГП-П с упорядоченным расположением атомов меди в алюминии. Затем следуют изменения, приближающие сплав к равновесному состоянию, и это связано с образованием фазы СиА1 2 (0"), когерентно связанной с а-твсрдым раствором.

Фаза 0" имеет тетрагональную решетку.

Четвертая стадия превращений сводится к возникновению стабильной фазы СиЛ1 2 , обособленной от матричного a-твердого раствора, и переходу сплава к исходному (до закалки) равновесному состоянию. Со стадии выделения стабильной фазы СиЛ1 2 происходит заметное разупрочнение сплава. Дальнейший нагрев до 200- 250°С приводит к укрупнению (коагуляции) интерметаллида СиА1 2 (0-фазы).

Каждая из названных стадий может протекать независимо, или они могут накладываться друг на друга. Протекание той или иной стадии зависит от состава сплава и температуры старения. Максимальное упрочнение при искусственном старении связано с начальными стадиями старения. С увеличением температуры старения быстрее достигается упрочнение, но эффект упрочнения ниже и разупрочнение наступает в течении нескольких часов.

Для деформируемых алюминиевых сплавов, упрочняемых термической обработкой, структурные изменения характеризуют терминами зонного и фазового старения. Зонное старение (образование зон ГП-1 и ГП-П) не приводит к разупрочнению сплава при любой продолжительности выдержки. В этом случае сплавы имеют повышенный предел текучести (отношение а 02 /а в = 0,6-^0,7), повышенную пластичность и низкую чувствительность к хрупкому разрушению.

Фазовое старение может быть упрочняющим и разупрочняющим, если в процессе старения происходит каогуляция частиц упрочняющих фаз (0" и 0). В результате фазового старения сплавы имеют высокий предел текучести (отношение а 0>2 /ст в достигает 0,9-0,95), в то время как пластичность, вязкость, сопротивление хрупкому разрушению и коррозии под напряжением снижаются.

Эффект старения отмечают и применяют не только в системах цветных сплавов на основе алюминия, меди, магния, титана, но и в сплавах никеля и железа.

Для сплавов Д1, Д19 температура нагрева под закалку близка к температуре плавления эвтектик, по ниже их, и равна 505°С, а для сплавов Д16, ВД17, Д18 - 500°С. В закаленном состоянии дуралю- мины (за исключением Д18) интенсивно упрочняются (временное сопротивление разрыву после естественного старения в течение 4 суток составляет 450 МПа, пластичность - 18%). Искусственному старению подвергают изделия из сплавов Д16, Д19, работающие при 125-200°С. Режим искусственного старения закаленного сплава Д16 - 190°С, продолжительность 8-12 ч. В результате искусственного старения прочность дуралюмина Д16 мало отличается от прочности в состоянии после естественного старения, но при этом повышается предел текучести и снижается пластичность.

Дуралюмины отличаются пониженной коррозионной стойкостью во влажном воздухе, речной и морской воде, нуждаются в средствах защиты от коррозии. Дуралюминиевые листы подвергают плакированию, а трубы и профили - анодной поляризации. Плакирование заключается в горячей прокатке листов дуралюмина, покрытых чистым алюминием (А7, А8). При этом алюминий сваривается сосновой и надежно защищает дуралюминиевый лист от коррозии. Толщина слоя алюминия обычно составляет 2-5% от толщины листа. Анодная поляризация в 10%-ном растворе серной кислоты полуфабрикатов из дуралюмина вызывает выделение кислорода и образование на их поверхности защитной оксидной (AI2O3) пленки, предохраняющей сплав от коррозии.

Дуралюмины хорошо свариваются точечной сваркой и нс свариваются сваркой плавлением из-за образования трещин, удовлетворительно обрабатываются резанием в закаленном и состаренном состояниях и хуже - в отожженном.

Наиболее прочный из дуралюминов сплав Д16 идет на изготовление обшивки лонжеронов, шпангоутов, стрингеров, тяг управления самолетов, силовых каркасов, кузовов автомобилей. В свежезакаленном состоянии из сплавов Д16 и Д1 изготавливают заклепки. Один из основных заклепочных сплавов - сплав Д18 в закаленном и естественно состаренном состоянии.

Высокопрочные сплавы В93, В95, В96Ц1 (см. табл. 9.5) системы А1-Zn-Mg-Си имеют повышенный предел прочности - 550-700 МПа. В качестве добавок содержат марганец, хром и цирконий, обеспечивающие неустойчивость твердого раствора, ускоряющие его распад и повышающие эффект старения. Упрочняющими фазами в сплавах являются MgZn 2 , Al 2 Mg3Zn3, Al 2 CuMg.

Высокопрочные алюминиевые сплавы подвергают закалке и искусственному старению. Сплавы закаливают с 460-470°С в холодной или горячей воде для исключения растрескивания крупногабаритных штамповок или поковок. При искусственном старении пересыщенный твердый раствор распадается с образованием дисперсных частиц упрочняющих фаз. Максимальная прочность сплавов отмечается при обработке по режиму Т1 (закалка; искусственное старение 120°С, 3-10 ч). После такой обработки сплавы имеют пониженную пластичность (7-10%) и склонны к коррозии под напряжением из-за неравномерного распада пересыщенного твердого раствора.

Старение высокопрочных сплавов по режимам Т2 и ТЗ при повышенных температурах (160-180°С) и продолжительности (10- 30 ч) увеличивает их вязкость, пластичность и сопротивление кор-

розни под напряжением. Чаще высокопрочные сплавы подвергают двухступенчатому старению при 100- 120°С, 3-10 ч (первая ступень) и 165- 185°С, 10-30 ч (вторая ступень). Первая ступень старения обеспечивает образование и равномерное распределение зон ГП. Па второй стадии при повышенных температурах и значительной продолжительности из зон ГП формируются и коагулируют частицы упрочняющих фаз. В результате двухступенчатого старения сплав В95пч имеет о н = 540-590 МПа, а 0 9= 410-470 МПа, 5 = = 10-13%.

Сплав В95 из всех высокопрочных сплавов является наиболее универсальным конструкционным материалом и находит широкое применение в авиации: для тяжелонагруженных деталей конструкций, работающих в основном в условиях сжатия (облицовка, шпангоуты, стрингеры, лонжероны самолетов).

Сплав В96Ц содержит повышенное количество основных легирующих элементов (цинка, магния, меди) и является самым прочным их всех деформируемых алюминиевых сплавов. Однако но сравнению со сплавом 1395 сплав В96Ц имеет пониженную пластичность, коррозионную стойкость. Сплав чувствителен к коррозии и различным концентраторам напряжений. Из сплава В96Ц методами горячего деформирования производят полуфабрикаты в виде труб, профилей различного сечения, поковок. Высокопрочные сплавы имеют удовлетворительную свариваемость при контактной сварке и плохую при сварке плавлением. Рабочая температура высокопрочных сплавов не превышает 120°С, так как при более высоких температурах отмечается резкое снижение их прочности, более интенсивное, чем у дуралюминов.

Высокомодульный сплав 1420 системы Al-Mg- Li обладает пониженной плотностью (2,5 г/см 3) и повышенным модулем упругости (75 000 МПа), что на 4% превышает модуль упругости сплава Д16. Сплав 1420 сваривается всеми видами сварки и обладает высокими коррозионными свойствами, близкими к характеристикам сплава АМгб.

Сплав 1420 подвергают закалке с 450°С (охлаждение на воздухе) и последующему искусственному старению при 120°С в течение 12-24 ч.

В результате закалки структура сплава состоит из пересыщенного твердого раствора магния и лития в алюминии. При искусственном старении образование зон ГП нс наблюдается. Упрочнение связано с выделением упрочняющей фазы AlLi, что не приводит к обеднению матричного твердого раствора магнием.

Сплав 1420 используют для замены в аэрокосмических изделиях дуралюминов, тем самым снижают их массу на 10-15%.

Ковочные сплавы АК6, АК8 (см. табл. 9.5) системы Al-Mg- Si-Си отличаются повышенной пластичностью при горячем деформировании и идут на изготовление поковок и штамповок. Ковка и штамповка сплавов производятся при температурах 450-470°С. В структуре сплавов наряду с твердым раствором присутствуют фазы CuAl 2 , CuMgAl 2 и Mg 2 Si. Сплавы АК6 и АК8 подвергают закалке и искусственному старению (режим Т1). Температура закалки сплавов АК6 и АК8 равна 520 и 500°С соответственно. Искусственное старение сплавов проводят по режиму 160-170°С, 12-15 ч. В результате такой обработки сплав АК8, содержащий 4,3% меди, имеет более высокие показатели прочности (см. табл. 9.5), чем сплав ЛК6, содержащий 2,2% меди. Для сплава ЛК6 характерно сочетание хорошей пластичности в горячем и холодном состояниях и достаточно высокой прочности. По вязкости разрушения сплав АК6 превосходит сплав АК8. Сплавы удовлетворительно свариваются, хорошо обрабатываются резанием. Сплавы АК6 и АК8 склонны к коррозии под напряжением и межкристаллитной коррозией. Коррозионную стойкость сплавов повышают электрохимическим оксидированием (анодированием) или путем нанесения лакокрасочных покрытий.

Сплав АК6 используют для изготовления средненагруженных деталей сложной формы (фитинги, крыльчатки, крепежные детали, подмоторные рамы). Сплав АК8, менее технологичный, чем АК6, рекомендуют для изготовления тяжслонагружснных деталей (подмоторные рамы, стыковые узлы, лонжероны, лопасти винтов вертолетов).

Жаропрочные алюминиевые сплавы Д20, 1201 (см. табл. 9.5) системы А1-Си-Мп и АК4-1 системы А1-Си-Mg-Fe-Ni способны работать при температурах до 300°С. В результате легирования сплавов цирконием, ванадием, титаном, железом и никелем тормозятся диффузионные процессы, образуются мелкодисперсные упрочняющие фазы Al 12 MnCu в сплавах Д20, 1201, Al 9 FeNi - в сплаве АК4-1, устойчивые к коагуляции при нагреве. Сплавы применяются в состоянии после закалки с температурой 535°С и искусственного старения при температуре 190°С в течение 10-18 ч. При комнатной температуре прочность жаропрочных алюминиевых сплавов мало отличается от прочности дуралюмина (420-450 МПа). При 300°С сплав Д20 обнаруживает более высокую жаропрочность (а ню = 80 МПа) по сравнению со сплавом АК4-1, для которого afoo = = 45 МПа. Сплавы Д20, 1201 свариваются хорошо, а сплав АК4-1 удовлетворительно аргоно-дуговой и контактной сварками. Коррозионная стойкость сплавов невысокая, и для защиты от коррозии на поверхность деталей из них наносят лакокрасочные покрытия или анодируют детали. Особенно тщательно необходимо защищать сварные соединения. Из сплавов АК4-1, Д20, 1201 изготавливают полуфабрикаты в виде листов, плит, профилей, используемых для деталей и сварных изделий: поршней двигателей, головок

цилиндров, крыльчаток, сварных емкостей, лопаток и дисков осевых компрессоров турбовинтовых двигателей, обшивок сверхзвуковых самолетов.

Литейные алюминиевые сплавы. Литейные алюминиевые сплавы наряду с высокими литейными свойствами (жидкотекучестью, низкой усадкой, малой склонностью к образованию горячих трещин и пор) обладают оптимальными механическими свойствами и сопротивлением коррозии в различных агрессивных средах. Этим требованиям в большей степени отвечают сплавы систем А1-Si, Al-Си, А1-Mg, в структуре которых присутствует эвтектика. Дополнительное легирование сплавов системы А1-Si медью и марганцем, системы А1-Си марганцем, никелем, хромом, системы Al-Mg цинком позволяет улучшать их механические свойства (табл. 9.6) и повысить эксплуатационные характеристики.

Сплавы системы Al-Si- Mg АК9ч (АЛ4), АК8л (АЛ34), АК7ч (АЛ9), именуемые силуминами, получили наиболее широкое рас-

Таблица 9.6

Химический состав и механические свойства литейных алюминиевых сплавов

Состояние

Механические

свойства

элементы

АК8л (АЛ 34)

АМгбМц (АЛ 28)

Примечание : в графе «Состояние сплава» буква «М» обозначает, что сплав подвергнут модифицированию, буквы «3», «Д», «К» обозначают способ литья: соответственно в землю, под давлением, в кокиль.

пространение. Сплав АК12 (АЛ2) отвечает эвтектическому составу (10-13% Si). Эвтектическая структура этого сплава состоит из грубых игольчатых кристаллов кремния на фоне a-твердого раствора. В таком состоянии сплав АК12 (АЛ2) вследствие большой хрупкости кремния имеет пониженные механические свойства (а в = 130 МПа, 5 = 1-^-2%). Повышают прочность и пластичность сплава модифицированием, когда вводят в расплав смесь солей (67% NaF + 33% NaCl) в количестве 2-3% от массы сплава, равномерным тонким слоем на поверхность расплава при 780-830°С. Присутствие в расплаве натрия смещает линии диаграммы состояния системы А1-Si (рис. 9.7) и эвтектическую точку в сторону более высоких концентраций кремния. После модифицирования эвтектика состоит из мелких кристаллов кремния и а-твердого раствора. Рост кристаллов кремния в процессе затвердевания сдерживает пленка Na 2 Si, обволакивающая их. Помимо эвтектики в структуре модифицированного сплава АК12 (АЛ2) появляются избыточные кристаллы a-твердого раствора. В результате изменения структуры улучшаются механические свойства сплава (см. табл. 9.6). Модифицированию подвергают силумины (в том числе


Рис. 97. Диаграмма состояния системы А1-Si (а) и механические свойства сплавов этой системы (6):

1 - до модифицирования; 2 - после модифицирования и легированные), содержащие более 5-6% кремния. Легированные силумины АК9ч (АЛ4), АК7ч (АЛ9) дополнительно легированы магнием, а сплав АК8л (АЛ32) - магнием и медью (см. табл. 9.6). Эти сплавы упрочняются как модифицированием, так и термической обработкой. Упрочнение сплавов, легированных магнием, связано с образованием фазы Mg 2 Si, а одновременно медью и магнием - с фазами СиА1 2 и Al,.Mg-) Cu 1 Si4. Легированные силумины АК9ч (АЛ4), АК7ч (АЛ9), АК8л (АЛ34) упрочняются термической обработкой по режимам Т1, Т4, Т5, Тб (например, для АК8л (АЛ34) - Т5: закалка 535°С, старение 175°С, б ч; для АК9ч (АЛ4) - Тб: закалка 535°С, старение 175°С, 15 ч; для АК7ч (АЛ9) - Т4: за- калка 515°С).

Сплав АК12 (АЛ2) применяют для малонагруженных деталей сложной конфигурации, сплавы АК9ч (АЛ4) и АК7ч (АЛ9) для средних и крупных деталей (корпусов компрессоров, картеров и блоков цилиндров двигателей). Отливки из сплава АК7ч (АЛ9) в закаленном состоянии (Т4) отличаются повышенной пластичностью (см. табл. 9.6), а в состоянии Тб (закалка и старение) - повышенной прочностью. Сплав АК8л (АЛ34) превосходит по прочности сплавы АК9ч (АЛ4) и АК7ч (АЛ9). Сплавы АК8л (АЛ34) и АК8М (АЛ32) предназначены для литья под давлением. Большая скорость кристаллизации при литье под давлением, присутствие в составе сплавов Мп и Ti обеспечивают формирование мстаста- бильной структуры в отливке из этих сплавов. В результате искусственного старения при 175°С без предварительной закалки (режим Т1) происходят распад пересыщенного твердого раствора и упрочнение сплава. При изготовлении деталей другими методами литья сплавы подвергают упрочняющей термической обработке (режим Т5). Сплавы АК8л (АЛ34) и АК8М (АЛ32) идут на изготовление сложных по конфигурации деталей блоков цилиндров, головок блоков и других деталей двигателей внутреннего сгорания.

Силумины отличаются высокой герметичностью, удовлетворительной обрабатываемостью резанием, хорошей свариваемостью и коррозионной стойкостью.

Высокопрочные и жаропрочные литейные сплавы АМ5 (АЛ 19) системы А1-Си-Mn, АК5М (АЛ5) системы А1-Si-Си-Mg помимо меди (основного легирующего элемента) содержат Мп (см. табл. 9.6). Сплав АМ5 (АЛ 19) по химическому составу близок к сплаву Д20. Повышенное содержание марганца и титана в сплаве АМ5 (АЛ 19) обеспечивает присутствие в его структуре наряду с твердым раствором фаз CuAl 2 , Al 12 Mn 2 Cu и AljTi. Сплав АМ5 (АЛ19) упрочняется термообработкой по режимам Т4, Т5,Т7 (Т5: закалка 545°С, 12 ч, старение 175°С, 3-6 ч) (см. табл. 9.6). Дополнительное легирование цирконием, церием и никелем (сплав АЛЗЗ) приводит к связыванию некоторого количества меди в нерастворимые фазы и образованию фаз Al 2 Ce, Al 3 Zr, Al^Cu^Ni; это уменьшает эффект термической обработки, но жаропрочность сплава АЛЗЗ выше, чем у сплава АЛ 19, так как упомянутые фазы препятствуют процессу ползучести. Сплав АМ5 (АЛ 19) хорошо сваривается и обрабатывается резанием и используется для литья крупногабаритных отливок в песчаные формы.

Сплав АК5М (АЛ5) показывает высокие прочностные характеристики в состоянии после термической обработки Т5: закалка 525°С, старение 180°С, 5 ч. При старении из пересыщенного твердого раствора выделяются мелкодисперсные частицы фаз CuAl 2 , Mg 2 Si, Al v Mg 5 Cu 4 Si 4 , упрочняющих сплав. Среди силуминов сплав АК5М (АЛ5) из-за наличия в нем меди является более прочным. По той же причине сплав имеет пониженную коррозионную стойкость. Сплав рекомендуется для деталей сложной конфигурации, рабочая температура которых не превышает 250°С.

Коррозионностойкие литейные алюминиевые сплавы АМг5Мц (АЛ28) системы AI-Mg, АЦЧМг (АЛ24) системы А1-Zn-Mg обладают наряду с высокой коррозионной стойкостью во многих агрессивных средах высокими прочностью и пластичностью (см. табл. 9.6). Сплавы системы AI-Mg имеют невысокие литейные свойства из-за большого (100-120°С) интервала кристаллизации, значительного газосодержания и сильной окисляемости. По жид- котекучести сплавы уступают силуминам. При плавке и литье сплавов системы AI-Mg их расплавы защищают от окисления специальными флюсами.

Сплав АМг5Мц (АЛ28) содержит 4,8-6,3% магния, не склонен к коррозии под напряжением и не чувствителен к образованию газовой пористости и окислению. Сплав не упрочняется термической обработкой и применяется в литом состоянии (см. табл. 9.6). Из сплава АЛ28 получают сложные отливки для деталей средней нагруженное™, сплав хорошо сваривается.

Сплав АЦ4Мг (АЛ24), обладая высокой коррозионной стойкостью, стабильными механическими свойствами, способен надежно работать при температурах до 150°С. Сплав упрочняется термической обработкой Т1 (естественное или искусственное старение без предшествующей закалки) (см. табл. 9.6) либо закаленной с 550°С (на воздухе или в кипящей воде) с последующим искусственным старением (165°С, 22 ч).

Сплавы АМг5Мц (АЛ28) и АЦ4Мг (АЛ24) способны заменить дефицитные бронзы, латуни, нержавеющие стали и обеспечить надежную работу деталей в условиях коррозионного воздействия морской воды.

Спеченные алюминиевые порошки и гранулированные сплавы

характеризуются повышенными механическими и физическими свойствами.

Спеченный алюминиевый порошок (САП) - это материал, который получают прессованием и с последующим спеканием алюминиевого порошка (пудры), представляющего собой чешуйки толщиной ~1 мкм.

Пудру получают пульверизацией жидкого алюминия и размолом полученного порошка в шаровых мельницах. Измельчение порошка увеличивает содержание оксида алюминия в порошке. При производстве САПов используют алюминиевые пудры трех марок: АПС-1, АПС-2 и АПС-3, которые содержат оксид алюминия (6-9, 9-13 и 13-18% соответственно).

Брикетирование алюминиевой пудры осуществляют под давлением 300-750 МПа. При брикетировании оксидная пленка разрывается, поверхность частиц увеличивается, неокисленные участки поверхности алюминиевых частиц вступают в контакт и происходит их схватывание. Спекание брикетов при температурах 450-500°С под давлением 400-600 МПа увеличивает контакт поверхностей неокислеиного алюминия и увеличивает силы связи между частицами алюминия. Плотность спеченного брикета возрастает с 2,6 до 7 г/см 3 , что близко к плотности литого алюминия. Из спеченных брикетов методом горячего прессования получают полуфабрикаты - листы, прутки, трубы, штамповые заготовки.

Структура сплавов САП состоит из смеси алюминия и дисперсных чешуек оксида алюминия. Частицы оксида алюминия не растворяются в алюминии и нс коагулируют, что обеспечивает стабильность структуры и свойств при температурах до 500°С (табл. 9.7). Повышенная прочность САПов вызвана дисперсностью частиц А1 2 0з, задерживающих движение и перераспределение дис-

Таблица 9.7

Состав и механические свойства спеченных и гранулируемых сплавов

технологической

обработки

Механические свойства

Si 25-30 Al - ост.

Si 25-30 Al - ост.

локаций. САПы деформируются в холодном и горячем состояниях, хорошо обрабатываются резанием, удовлетворительно свариваются контактной и аргоно-дуговой сварками. Из сплавов САП изготавливают поршневые штоки, лопатки компрессоров, турбин и вентиляторов.

Спеченные алюминиевые ставы (САС) изготавливают по той же технологии, что и САПы, но порошки получают распылением сплавов заданного состава. Так, основу сплава САС-1 составляет сплав системы А1-Si-Ni (25-30% Si, 5-7% Ni), a CAC-2 - сплав системы Al-Si-Fe (25-30% Si, 5-7% Fe).

Сплав САС-1 содержит в структуре дисперсные и равномерно распределенные включения кристаллов кремния и никелевых ин- терметаллидов в виде пластин, оказывающих решающее влияние на уровень механических свойств (см. табл. 9.7). Сплавы отличаются низким коэффициентом термического расширения. Сплавы САП и САС могут длительное время работать при температуре 300-500°С и идут на обшивку летательных аппаратов, дисков и лопаток компрессоров.

Гранулированные сплавы получают компактированием гранул диаметром 1-4 мм, полученных при очень высоких скоростях охлаждения (10 3 -10 4 °С/с). Высокие скорости охлаждения всплавах алюминия с переходными металлами (Mn, Cr, Ir, Ti, V) при раскислении расплава позволяют получить пересыщенные твердые растворы на основе А1, концентрация этих компонентов превышает предельную растворимость в несколько раз. Такие твердые растворы получили название аномально пересыщенных. Гранулы из этих сплавов имеют гетерогенную структуру, однако первичные интер- металлидиые включения дисперсные и равномерно распределены по объему. Из гранул горячим прессованием получают полуфабрикаты. В процессе горячей деформации при производстве полуфабрикатов аномально пересыщенные растворы распадаются с образованием дисперсных частиц интсрмсталлидов Al 3 Zn и др. Таким образом, технологический нагрев при изготовлении полуфабрикатов в виде листов, прутков, профилей является упрочняющим старением. Роль закалки для таких сплавов выполняет кристаллизация при больших скоростях охлаждения.

Сплав 01419 системы Al-Сг-Zn является гранулируемым дисперсионно твердеющим, упрочняемым в результате выделения дисперсных фаз Al 3 Zn, AlyCr (см. табл. 9.7). Стабильная структура сплава 01419 при нагреве до 350°С придает ему высокую жаростойкость.

В сплаве ПВ90 гранулы имеют состав сплавов В95, В96Ц системы Al-Zn-Mg-Си, упрочняемых термической обработкой (режим Т1). Сплав ПВ90, обработанный но режиму Т1, имеет повышенные прочностные характеристики (см. табл. 9.7) и по прочности и температуре рекристаллизации превосходит серийные деформируемые

алюминиевые сплавы. Он хороню обрабатывается резанием, полируется и отличается стабильностью размеров. Детали из сплава ПВ90 применяют в узлах трения и ответственных конструкциях высокоточных приборов.

Композиционные алюминиевые сплавы. В качестве материала матрицы (см. параграф 11.1) применяют технически чистый алюминий (АД1) и сплавы АДЗЗ, В95, САП-1 и др. Для армирования матриц служат волокна бора и углеродные. Так, сплавы ВКА-1, ВКА-2 получают армированием борными волокнами алюминиевых сплавов АД1, АДЗЗ. Технология получения композитов включает операции намотки борного волокна на оправку, его фиксацию путем плазменного напыления матричного сплава, раскройку заготовок и их прессование или прокатку. Сплав ВКА-1 (табл. 9.8), содержащий 50% (объемных) борных волокон, наряду с высокими показателями прочности и жесткости обладает хорошей технологичностью и конструкционной надежностью. В интервале температур 80-500°С сплав ВКА-1 но прочности и жесткости превосходит промышленные сплавы В95 и АК4-1.

Таблица 9.8

Состав и свойства некоторых композиционных алюминиевых сплавов

*,**,***_ пределы прочности при температурах 300,400, 500°С соответственно.

Алюминиевые сплавы, армированные стальной проволокой (КАС), получают методом прокатки в вакууме. В качестве материала матрицы в КАС-1 используют сплав АВ или материал САН-1 (см. табл. 9.8). Сплав сохраняет высокие кратковременную и длительную прочности при повышенных температурах.

Накладки из КАС-1 применяют в целях ограничения распространения трещин путем закрепления их на деталях из алюминиевых сплавов методами диффузионной сварки, клеесварки и приклеивания.

К цветным металлам относятся все металлы, кроме железа и сплавов на его основе - сталей и чугунов, которые называются черными. Сплавы на основе цветных металлов используют в основном как конструкционные материалы со специальными свойствами: коррозионно-стойкие, подшипниковые (обладающие низким коэффициентом трения), тепло- и жаропрочные и др.

В маркировке цветных металлов и сплавов на их основе нет единой системы. Во всех случаях принята буквенно-цифровая система. Буквы указывают на принадлежность сплавов к определенной группе, а цифры в разных группах материалов имеют разное значение. В одном случае они указывают на степень чистоты металла (для чистых металлов), в другом - на количество легирующих элементов, а в третьем обозначают номер сплава, которому по гос. стандарту должны соответствовать определенный состав или свойства.
Медь и ее сплавы
Техническая медь маркируется буквой М, после которой идут цифры, связанные с количеством примесей (показывают степень чистоты материала). Медь марки М3 содержит примесей больше, чем М000. Буквы в конце марки означают: к - катодная, б - безкислородная, р - раскисленная. Высокая электропроводность меди обуславливает ее преимущественное применение в электротехнике как проводникового материала. Медь хорошо деформируется, хорошо сваривается и паяется. Ее недостатком является плохая обрабатываемость резанием.
К основным сплавам на основе меди относятся латуни и бронзы. В сплавах на основе меди принята буквенно-цифровая система, характеризующая химический состав сплава. Легирующие элементы обозначаются русской буквой, соответствующей начальной букве названия элемента. Причем часто эти буквы не совпадают с обозначением тех же легирующих элементов при маркировке стали. Алюминий - А; Кремний - К; Марганец - Мц; Медь - М; Никель - Н; Титан -Т; Фосфор - Ф; Хром -Х; Бериллий - Б; Железо - Ж; Магний - Мг; Олово - О; Свинец - С; Цинк - Ц.
Порядок маркировки литейных и деформируемых латуней разный.
Латунь - сплав меди с цинком (Zn от 5 до 45%). Латунь с содержанием от 5 до 20% цинка называется красной (томпаком), с содержанием 20-36% Zn - желтой. На практике редко используют латуни, в которых концентрация цинка превышает 45%. Обычно латуни делят на:
- двухкомпонентные латуни или простые, состоящие только из меди, цинка и, в незначительных количествах, примесей;
-многокомпонентные латуни или специальные - кроме меди и цинка присутствуют дополнительные легирующие элементы.
Деформируемые латуни маркируются по ГОСТ 15527-70.
Марка простой латуни состоит из буквы «Л», указывающей тип сплава - латунь, и двузначной цифры, характеризующей среднее содержание меди. Например, марка Л80 - латунь, содержащая 80 % Cu и 20 % Zn. Все двухкомпонентные латуни хорошо обрабатываются давлением. Их поставляют в виде труб и трубок разной формы сечения, листов, полос, ленты, проволоки и прутков различного профиля. Латунные изделия с большим внутренним напряжением (например, нагартованные) подвержены растрескиванию. При длительном хранении на воздухе на них образуются продольные и поперечные трещины. Чтобы избежать этого, перед длительным хранением необходимо снять внутреннее напряжение, проведя низкотемпературный отжиг при 200-300 C.
В многокомпонентных латунях после буквы Л пишут ряд букв, указывающих, какие легирующие элементы, кроме цинка, входят в эту латунь. Затем через дефисы следуют цифры, первая из которых характеризует среднее содержание меди в процентах, а последующие - каждого из легирующих элементов в той же последовательности, как и в буквенной части марки. Порядок букв и цифр устанавливается по содержанию соответствующего элемента: сначала идет тот элемент, которого больше, а далее по нисходящей. Содержание цинка определяется по разности от 100%.
Латуни в основном применяются как деформируемый коррозионно-стойкий материал. Из них изготавливают листы, трубы, прутки, полосы и некоторые детали: гайки, винты, втулки и др.
Литейные латуни маркируются в соответствии с ГОСТ 1711-30. В начале марки тоже пишут букву Л (латунь), после которой пишут букву Ц, что означает цинк, и число, указывающее на его содержание в процентах. В легированных латунях дополнительно пишут буквы, соответствующие введенным легирующим элементам, и следующие за ними числа указывают на содержание этих элементов в процентах. Остаток, недостающий до 100 %, соответствует содержанию меди. Литейные латуни используют для изготовления арматуры и деталей для судостроения, втулок, вкладышей и подшипников.
Бронзы (сплавы меди с различными элементами, где цинк не является основным). Они подобно латуням подразделяются на литейные и деформируемые. Маркировка всех бронз начинается с букв Бр, что сокращенно означает бронза.
В литейных бронзах после Бр пишут буквы с последующими цифрами, которые символически обозначают элементы, введенные в сплав (в соответствии с таблицей 1), а последующие цифры обозначают содержание этих элементов в процентах. Остальное (до 100 %) - подразумевается медь. Иногда в некоторых марках литейных бронз в конце пишут букву «Л», что означает литейная.
Большинство бронз обладает хорошими литейными свойствами. Их применяют для различного фасонного литья. Чаще всего их используют как коррозионно-стойкий и антифрикционный материал: арматура, ободы, втулки, зубчатые колеса, седла клапанов, червячные колеса и т.д. Все сплавы на основе меди имеют высокую хладостойкость.
Алюминий и сплавы на его основе
Алюминий выпускают в виде чушек, слитков, катанки и т.п. (первичный алюминий) по ГОСТ 11069-74 и в виде деформируемого полуфабриката (листы, профили, прутки и т.п.) по ГОСТ 4784-74. По степени загрязненности тот и другой алюминий подразделяется на алюминий особой чистоты, высокой чистоты и технической чистоты. Первичный алюминий по ГОСТ 11069-74 маркируют буквой А и числом, по которому можно определить содержание примесей в алюминии. Алюминий хорошо деформируется, но плохо обрабатывается резанием. Прокаткой из него можно получить фольгу.

Сплавы на основе алюминия подразделяются на литейные и деформируемые.
Литейные сплавы на основе алюминиямаркируются по ГОСТ 1583-93. Марка отражает основной состав сплава. Большинство марок литейных сплавов начинаются с буквы А, что означает алюминиевый сплав. Затем пишут буквы и цифры, отражающие состав сплава. В ряде случаев алюминиевые сплавы маркируют буквами АЛ (что означает литейный сплав алюминия) и цифрой, означающей номер сплава. Буква В, стоящая в начале марки показывает, что сплав высокопрочный.
Применение алюминия и сплавов на его основе очень разнообразно. Технический алюминий применяют в основном в электротехнике в качестве проводника электрического тока, как заменитель меди. Литейные сплавы на основе алюминия широко применяются в холодильной и пищевой промышленности при изготовлении деталей сложной формы (различными методами литья), от которых требуется повышенная коррозионная стойкость в сочетании с небольшой плотностью, например, поршни некоторых компрессоров, рычаги и другие детали.
Деформируемые сплавы на основе алюминия также находят широкое применение в пищевой и холодильной технике для изготовления различных деталей методом обработки давлением, к которым предъявляются также повышенные требования к коррозионной стойкости и плотности: различные емкости, заклепки и т.п. Важным достоинством всех сплавов на основе алюминия является их высокая хладостойкость.
Титан и сплавы на его основе
Титан и сплавы на его основе маркируются в соответствии с ГОСТ 19807-74 по буквенно-цифровой системе. Однако какой-либо закономерности в маркировке не имеется. Единственной особенностью является наличие во всех марках буквы Т, которая свидетельствует о принадлежности к титану. Числа в марке означают условный номер сплава.
Технический титан маркируется: ВТ1-00; ВТ1-0. Все остальные марки относятся к сплавам на основе титана (ВТ16, АТ4, ОТ4, ПТ21 и др). Главным достоинством титана и его сплавов является хорошее сочетание свойств: относительно низкой плотности, высокой механической прочности и очень высокой коррозионной стойкости (во многих агрессивных средах). Основной недостаток - высокая стоимость и дефицитность. Эти недостатки сдерживают применение их в пищевой и холодильной технике.

Сплавы титана применяются в ракетной, авиационной технике, химическом машиностроении, в судостроении и транспортном машиностроении. Они могут использоваться при повышенных температурах до 500-550 градусов. Изделия из сплавов титана изготавливают обработкой давлением, но могут быть изготовлены и литьем. Состав литейных сплавов обычно соответствует составу деформируемых сплавов. В конце марки литейного сплава стоит буква Л.
Магний и сплавы на его основе
Технический магний из-за его неудовлетворительных свойств не находит применения в качестве конструкционного материала. Сплавы на основе магния в соответствии с гос. стандартом делятся на литейные и деформируемые.
Литейные сплавы магнияв соответствии с ГОСТ 2856-79 маркируют буквами МЛ и числом, которое обозначает условный номер сплава. Иногда после числа пишут строчные буквы: пч - повышенной чистоты; он - общего назначения. Деформируемые сплавы магния маркируют в соответствии с ГОСТ 14957-76 буквами МА и числом, обозначающим условный номер сплава. Иногда после числа могут быть строчные буквы пч, что означает повышенной чистоты.

Сплавы на основе магния обладают подобно сплавам на основе алюминия хорошим сочетанием свойств: низкой плотностью, повышенной коррозионной стойкостью, относительно высокой прочностью (особенно удельной) при хороших технологических свойствах. Поэтому из сплавов магния изготавливают как простые, так и сложные по форме детали, от которых требуется повышенная коррозионная стойкость: горловины, бензиновые баки, арматура, корпусы насосов, барабаны тормозных колес, фермы, штурвалы и многие другие изделия.
Олово, свинец и сплавы на их основе
Свинец в чистом виде практически не используется в пищевой и холодильной технике. Олово применяется в пищевой промышленности в качестве покрытий пищевой тары (например лужение консервной жести). Маркируется олово в соответствии с ГОСТ 860-75. Имеются марки О1пч; О1; О2; О3; О4. Буква О обозначает олово, а цифры - условный номер. С увеличением номера увеличивается количество примесей. Буквы пч в конце марки означают - повышенной чистоты. В пищевой промышленности для лужения консервной жести применяют олово чаще всего марок О1 и О2.
Сплавы на основе олова и свинца в зависимости от назначения подразделяются на две большие группы: баббиты и припои.
Баббиты - сложные сплавы на основе олова и свинца, которые дополнительно содержат сурьму, медь и другие добавки. Они маркируются по ГОСТ 1320-74 буквой Б, что означает баббит, и числом, которое показывает содержание олова в процентах. Иногда кроме буквы Б может быть другая буква, которая указывает на особые добавки. Например, буква Н обозначает добавку никеля (никелевый баббит), буква С - свинцовый баббит и др. Следует иметь в виду, что по марке баббита нельзя установить его полный химический состав. В некоторых случаях даже не указывается содержание олова, например в марке БН, хотя здесь его содержится около 10 %. Имеются и безоловянистые баббиты (например свинцово-кальциевые), которые маркируются по ГОСТ 1209-78 и в данной работе не изучаются.

Баббиты являются наилучшим антифрикционным материалом и применяются в основном в подшипниках скольжения.
Припои в соответствии с ГОСТ 19248-73 подразделяются на группы по многим признакам: по способу расплавления, по температуре расплавления, по основному компоненту и др. По температуре расплавления они подразделяются на 5 групп:

1. Особолегкоплавкие (температура плавления tпл ≤ 145 °С);

2. Легкоплавкие (температура плавления tпл > 145 °С ≤ 450 °С);

3. Среднеплавкие (температура плавления tпл > 450 °С ≤ 1100 °С);

4. Высокоплавкие (температура плавления tпл > 1100 °С ≤ 1850 °С);

5. Тугоплавкие (температура плавления tпл > 1850 °С).

Первые две группы применяются для низкотемпературной (мягкой) пайки, остальные - высокотемпературной (твердой) пайки. По основному компоненту припои подразделяют на: галлиевые, висмутовые, оловянно-свинцовые, оловянные, кадмиевые, свинцовые, цинковые, алюминиевые, германиевые, магниевые, серебряные, медно-цинковые, медные, кобальтовые, никелевые, марганцевые, золотые, палладиевые, платиновые, титановые, железные, циркониевые, ниобиевые, молибденоыве, ванадиевые.

Под металлами в технике подразумеваются как химические элементы, так и их соединения (сплавы), которые характеризуются специфическими свойствами: металлическим блеском, высокими электро- и теплопроводностью, непрозрачностью, способностью подвергаться обработке в горячем и холодном состояниях (ковка, прокатка, сварка, обработка резанием и др.). Такие признаки металлов обуславливаются их электронными межатомными связями и кристаллическим строением. Изменяя внутреннее строение металлов механической, термической, а также термомеханической обработкой, можно изменять их свойства.

Все металлы можно разделить на 2 большие группы – черные и цветные металлы.

Черные металлы (промышленное название железа и сплавов на его основе) имеют серебристо-серый цвет, большую плотность (кроме щелочноземельных), высокую температуру плавления, высокую твердость; для них характерен полиморфизм.

По этим признакам их можно разделить на:

железные металлы – Fe, Co, Ni (так называемые ферромагнетики) и близкий к ним по свойствам марганец. Кобальт, никель и марганец часто применяют как добавки к сплавам железа;

тугоплавкие металлы – металлы, температура плавления которых выше, чем у железа (т.е. > 1539 0 C). Применяются как добавки к легированным сталям, а также в качестве основы для соответствующих сплавов;

урановые металлы используются для нужд атомной энергетики;

редкоземельные металлы – лантаноиды (лантан, церий, цирконий, неодим и др.). Эти металлы обладают весьма близкими химическимим свойствами, но довольно различными физическими (температура плавления и др.). Применяются они как присадки к сплавам других элементов;

щелочноземельные металлы в свободном металлическом состоянии применяются в специальных случаях, например в качестве теплоносителей в атомных реакторах.

Цветные металлы (промышленное название всех металлов, за исключением железа) имеют характерную окраску (красные, желтые, белые), обладают большой пластичностью, малой твердостью и относительно низкой температурой плавления. Цветные металлы можно разделить на группы:

1. Легкие металлы – алюминий, магний, титан, бериллий и сплавы на основе алюминия и магния, которые имеют низкую плотность (до 5г/см 3).

2. Тяжелые металлы – медь, олово, цинк, свинец, кобальт и сплавы на основе меди, которые имеют плотность более 5 г/см 3 .

3. Тугоплавкие металлы – ванадий, вольфрам, кобальт, молибден, титан и др., а также сплавы на их основе.

4. Легкоплавкие металлы – цинк, кадмий, ртуть, индий, олово, свинец, висмут, сурьма и др. Имеют низкую температуру плавления.

5. Благородные металлы – серебро, золото, металлы платиновой группы (платина, палладий, иридий, родий, осмий, рутений). Имеют высокую коррозионную стойкость.

В историческом аспекте применение металлов началось с золота (1 млн. лет до н.э.), серебра (4…6 тыс. лет до н.э.), меди. Затем начали применять металлы, которые легко восстанавливаются и поддаются обработке, в частности, при температурном нагреве [свинец, олово, железо (3 тыс. лет до н.э.)].

В настоящее время в строительстве чаще всего применяют не чистые металлы, а полученные на их основе сплавы. Наибольшее распространение получили сплавы на основе черных металлов (~94%) и незначительное – сплавы цветных металлов (рис. 1.10).

Основная часть при изготовлении и применении черных металлов и сплавов приходится на железо (в виде его сплава с углеродом – сталь ). Так, по данным Международного института чугуна и стали (IISI), в 2006 году объем мировой выработки стали составил 1 239,5 млн. тонн, что на 65,3 % превысило общие мировые показатели десятилетней давности и на 45,7 % – пятилетней. При этом наиболее значительный рост за последние десять лет отмечается в Азии, в частности в Китае. Так, в 1996 г. Китай произвел 101,2 млн. тонн стали; к 2001 г. этот показатель возрос на 49,1 % и составил 150,9 млн. тонн; в 2006 г. Китай произвел 418,8 млн. т. стали – таким образом, всего за десять лет производство стали в Китае выросло на 313,8 %. Также заметно выросла доля Китая в мировом производстве стали, достигнув в 2006 г. 33,8 % от общего мирового производства.

Рис. 1.10.Классификация металлов и сплавов

В 2006 году тремя ведущими производителями стали были Китай (418,8 млн. тонн), Япония (116,2 млн. тонн) и США (98,5 млн. тонн). В десятку ведущих стран-производителей стали в мире также вошли Россия (70,6 млн. тонн), Южная Корея (48,4 млн. тонн), Германия (47,2 млн. тонн), Индия (44,0 млн. тонн), Украина (40,8 млн. тонн), Италия (31,6 млн. тонн), Бразилия (30,9 млн. тонн).

Значительный процент использования черных металлов и сплавов, в частности стали , связан с редким сочетанием полезных свойств : высокие прочность, пластичность, вязкость, способность поддаваться обработке сверлением, строганием, свариванием, резке и др., относительно низкая стоимость (так, относительная стоимость железа – 1; алюминия – 6; меди – 8; титана – 160; серебра – 290; золото – 11000; платина – 27000), легкость (под которой понимается отношение плотности к расчетному сопротивлению), непроницаемость для газов и жидкостей, высокая электро - и теплопроводность .

Сталь имеет и ряд недостатков; в общем случае к основным недостаткам стали относят: низкую коррозионную стойкость, низкую огнестойкость.

Не защищенная от действия атмосферной влаги, а иногда (что актуально для промышленных регионов) атмосферы, загрязненной агрессивными газами, сталь корродирует (окисляется), что постепенно приводит к ее полному разрушению. При неблагоприятных условиях это может произойти через два-три года. Хотя алюминиевые сплавы обладают значительно большей стойкостью против коррозии, при неблагоприятных условиях они также корродируют. Хорошо сопротивляется коррозии чугун.

Повышение коррозионной стойкости стальных конструкций достигается включением в сталь специальных легирующих элементов, периодическим покрытием конструкций защитными пленками (лаки, краски и т.п.), покрытием элементов конструкций при их изготовлении защитными покрытиями, в частности металлами, имеющими высокую коррозионную стойкость (оцинковка), а также выбором рациональной конструктивной формы элементов (без щелей и пазух, где могут скапливаться влага и пыль), удобной для очистки и защиты (узлы сварных конструкций желательно обваривать по периметру, во избежание появления и развития щелевой коррозии).

Низкая огнестойкость. У стали при температуре 200 0 С начинает уменьшаться модуль упругости, при t=600 0 С сталь практически полностью переходит в пластическое состояние. Алюминиевые сплавы переходят в пластическое состояние уже при температуре t=300 0 С. Поэтому металлические конструкции зданий, опасных в пожарном отношении (склады с горючими или легковоспламеняющимися материалами, жилые и общественные здания), а также эксплуатирующиеся в условиях с повышенным тепловыделением (мартеновские цеха), должны быть защищены огнестойкими покрытиями (бетон, керамика, специальные смеси и т.п.).

Материаловедение: конспект лекций Алексеев Виктор Сергеевич

4. Классификация сплавов. Железо и его сплавы

Сталь и чугун – основные материалы в машиностроении. Они составляют 95 % всех используемых в технике сплавов.

Сталь – это сплав железа с углеродом и другими элементами, содержащий до 2,14 % углерода. Углерод – важнейшая примесь стали. От его содержания зависят прочность, твердость и пластичность стали. Кроме железа и углерода, в состав стали входят кремний, марганец, сера и фосфор. Эти примеси попадают в сталь в процессе выплавки и являются ее неизбежными спутниками.

Чугун – сплав на железной основе. Отличие чугуна от стали заключается в более высоком содержании в нем углерода – более 2,14 %. Наибольшее распространение получили чугуны, содержащие 3–3,5 % углерода. В состав чугунов входят те же примеси, что и в стали, т. е. кремний, марганец, сера и фосфор. Чугуны, у которых весь углерод находится в химическом соединении с железом, называют белыми (по виду излома), а чугуны, весь углерод которых или большая его часть представляет графит, получили название серых. В белых чугунах всегда имеется еще одна структурная составляющая – ледебурит. Это эвтектика, т. е. равномерная механическая смесь зерен аустенита и цементита, получающаяся в процессе кристаллизации, в ней 4,3 % углерода. Ледебурит образуется при температуре +1147 °C.

Феррит – твердый раствор небольшого количества углерода (до 0,04 %) и других примесей в? – железе. Практически это чистое железо. Цементит – химическое соединение железа с углеродом – карбид железа.

Перлит – равномерная механическая смесь в сплаве феррита и цементита. Такое название эта смесь получила потому, что шлиф при ее травлении имеет перламутровый оттенок. Так как перлит образуется в результате процессов вторичной кристаллизации, его называют эвтектоидом. Он образуется при температуре +727 °C. В нем содержится 0,8 % углерода.

Перлит имеет две разновидности. Если цементит в нем расположен в виде пластинок, его называют пластинчатым, если же цементит расположен в виде зерен, перлит называют зернистым. Под микроскопом пластинки цементита кажутся блестящими, потому что обладают большой твердостью, хорошо полируются и при травлении кислотами разъедаются меньше, чем пластинки мягкого феррита.

Если железоуглеродистые сплавы нагреть до определенных температур, произойдет аллотропическое превращение? -железа в? -железо и образуется структурная составляющая, которая называется аустенитом.

Аустенит представляет собой твердый раствор углерода (до 2,14 %) и других примесей в? -железе. Способность углерода

растворяться в железе неодинакова при различных температурах. При температуре +727 °C ? -железо может растворять не более 0,8 % углерода. При этой же температуре происходит распад аустенита с образованием перлита. Аустенит – мягкая структурная составляющая. Он отличается большой пластичностью, не обладает магнитными свойствами.

При изучении структурных составляющих железоуглеродистых сплавов установлено, что они при комнатной температуре всегда состоят из двух структурных элементов: мягкого пластичного феррита и твердого цементита, упрочняющего сплав.

Из книги Работы по металлу автора Коршевер Наталья Гавриловна

Железо Оно было известно уже в древности. А в Средневековье различали не только сталь, железо и чугун, но и различные их марки. Например, клинки оружия могли изготавливаться из обычной стали или из дамасской – знаменитого булата. Кузнецы того времени, конечно же, не знали,

Из книги Загадка булатного узора автора Гуревич Юрий Григорьевич

Медь и сплавы Довольно часто домашние слесари отдают предпочтение меди (удельный вес 9,0 г/см2), поскольку ее мягкость и пластичность позволяют добиваться точности и высокого качества при изготовлении всевозможных деталей и изделий.Чистая (красная) медь – прекрасный

Из книги Материаловедение: конспект лекций автора Алексеев Виктор Сергеевич

«Белое железо» индийского царя Пора Во второй половине I тысячелетия до нашей эры железо знали уже многие страны и народы. Из него изготовляли плуг и топор, кинжал и меч. Оружейники старались сделать кинжалы, мечи прочными и упругими, твердыми и острыми. В древности это

Из книги Боевые корабли автора Перля Зигмунд Наумович

ЛЕКЦИЯ № 5. Сплавы 1. Строение металлов Металлы и их сплавы – основной материал в машиностроении. Они обладают многими ценными свойствами, обусловленными в основном их внутренним строением. Мягкий и пластичный металл или сплав можно сделать твердым, хрупким, и наоборот.

Из книги Материалы для ювелирных изделий автора Куманин Владимир Игоревич

1. Диаграмма железо-цементит Диаграмма железо-цементит охватывает состояние железоуглеродистых сплавов, которые содержат до 6,67 % углерода. Рис. 7. Диаграмма состояния железоуглеродистых сплавов (сплошные линии – система Fe-Fe 3 C; штриховые – система Fe-C)Углеродистые

Из книги Фильтры для очистки воды автора Хохрякова Елена Анатольевна

2. Медные сплавы Медь относится к числу металлов, известных с глубокой древности. Раннему знакомству человека с медью способствовало то, что она встречается в природе в свободном состоянии в виде самородков, которые иногда достигают значительных размеров. В настоящее

Из книги Материаловедение. Шпаргалка автора Буслаева Елена Михайловна

3. Алюминиевые сплавы Название «алюминий» происходит от латинского слова alumen – так за 500 лет до н. э. называли алюминиевые квасцы, которые использовались для протравливания при крашении тканей и дубления кож.По распространенности в природе алюминий занимает третье

Из книги автора

4. Титановые сплавы Титан – металл серебристо-белого цвета. Это один из наиболее распространенных в природе элементов. Среди других элементов по распространенности в земной коре (0,61 %) он занимает десятое место. Титан легок (плотность его 4,5 г/см 3), тугоплавок

Из книги автора

5. Цинковые сплавы Сплав цинка с медью – латунь – был известен еще древним грекам и египтянам. Но выплавка цинка в промышленных масштабах началась лишь в XVII в.Цинк – металл светло-серо-голубоватого цвета, хрупкий при комнатной температуре и при 200 °C, при нагревании до

Из книги автора

Пар и железо В последние десятилетия XVIII века на заводах и фабриках Европы произошли большие изменения. Были изобретены паровая и другие машины для металлургических, машиностроительных и текстильных заводов и фабрик. Машинное производство вытесняло ручной труд. На

Из книги автора

7.4. Сплавы меди, имитирующие золотые и серебряные сплавы С целью удешевления художественных изделий при производстве недорогих украшений широко используются томпак, латунь, мельхиор, нейзильбер; при изготовлении художественных изделий – бронзы.Сплавы меди с цинком,

Из книги автора

10. Серебро и его сплавы Серебро – химический элемент, металл. Атомный номер 47, атомный вес 107,8. Плотность 10,5 г/см3. Кристаллическая решетка – гранецентрированная кубическая (ГЦК). Температура плавления 963 °C, кипения 2865 °C. Твердость по Бринеллю 16,7.Серебро – металл белого

Из книги автора

11. Золото и его сплавы Золото – химический элемент, металл. Атомный номер 79, атомный вес 196,97, плотность 19,32 г/см3. Кристаллическая решетка – кубическая гранецентрировапная (ГЦК). Температура плавления 1063 °C, кипения 2970 °C. Твердость по Бринеллю – 18,5.Золото – металл желтого

Из книги автора

Железо общее Железо – один из самых распространенных элементов в природе. Его содержание в земной коре составляет около 4,7 % по массе, поэтому железо, с точки зрения его распространенности в природе, принято называть макроэлементом.В природной воде железо содержится в

Из книги автора

27. Строение и свойства железа; метастабильная и стабильная фазовые диаграммы железо-углерод. Формирование структуры углеродистых сталей. Определение содержания углерода в стали по структуре Сплавы железа с углеродом являются самыми распространенными металлическими

Из книги автора

47. Титан и его сплавы Титан и сплавы на его основе обладают высокой коррозионной стойкостью и удельной прочностью. Недостатки титана: его активное взаимодействие с атмосферными газами, склонность к водородной хрупкости.Азот, углерод, кислород и водород, упрочняя титан,