Образование солей. Химические свойства солей и методи их получения

Химические уравнения

Химическое уравнение - это выражение реакции при помощи химических формул. Химические уравнения показывают, какие вещества вступают в химическую реакцию и какие вещества образуются в результате этой реакции. Уравнение составляется на основе закона сохранения массы и показывает количественные соотношения веществ, участвующих в химической реакции.

В качестве примера рассмотрим взаимодействие гидроксида калия с фосфорной кислотой :

Н 3 РО 4 + 3 КОН = К 3 РО 4 + 3 Н 2 О.

Из уравнения видно, что 1 моль ортофосфорной кислоты (98 г) реагирует с 3 молями гидроксида калия (3·56 г). В результате реакции образуется 1 моль фосфата калия (212 г) и 3 моля воды (3·18 г).

98 + 168 = 266 г; 212 + 54 = 266 г видим, что масса веществ, вступивших в реакцию, равна массе продуктов реакции. Уравнения химической реакции позволяет производить различные расчёты, связанные с данной реакцией.

Сложные вещества делятся на четыре класса: оксиды, основания, кислоты и соли.

Оксиды - это сложные вещества, состоящие из двух элементов, один из которых кислород, т.е. оксид - это соединение элемента с кислородом.

Название оксидов образуется от названия элемента, входящего в состав оксида. Например, BaO - оксид бария. Если оксид элемент имеет переменную валентность, то после названия элемента в скобках указывается его валентность римской цифрой. Например, FeO - оксид железа (I), Fe2О3 - оксид железа (III).

Все оксиды делятся на солеобразующие и несолеобразующие.

Солеобразующие оксиды - это такие оксиды, которые в результате химических реакций образуют соли. Это оксиды металлов и неметаллов, которые при взаимодействии с водой образуют соответствующие кислоты, а при взаимодействии с основаниями - соответствующие кислые и нормальные соли. Например, оксид меди (CuO) является оксидом солеобразующим, потому что, например, при взаимодействии её с соляной кислотой (HCl) образуется соль:

CuO + 2HCl → CuCl2 + H2O.

В результате химических реакций можно получать и другие соли:

CuO + SO3 → CuSO4.

Несолеобразующими оксидами называются такие оксиды, которые не образуют солей. Примером могут служить СО, N2O, NO.

Солеобразующие оксиды бывают 3-х типов: основными (от слова «основание»), кислотными и амфотерными.

Основные оксиды - это оксиды металлов, которым соответствуют гидроксиды, относящиеся к классу оснований. К основным оксидам относятся, например, Na2O, K2O, MgO, CaO и т.д.

Химические свойства основных оксидов

1. Растворимые в воде основные оксиды вступают в реакцию с водой, образуя основания:


Na2O + H2O → 2NaOH.

2. Взаимодействуют с кислотными оксидами, образуя соответствующие соли

Na2O + SO3 → Na2SO4.

3. Реагируют с кислотами, образуя соль и воду:

CuO + H2SO4 → CuSO4 + H2O.

4. Реагируют с амфотерными оксидами:

Li2O + Al2O3 → 2LiAlO2.

5. Основные оксиды реагируют с кислотными оксидами, образуя соли:

Na2O + SO3 = Na2SO4

Если в составе оксидов в качестве второго элемента будет неметалл или металл, проявляющий высшую валентность (обычно проявляют от IV до VII), то такие оксиды будут кислотными. Кислотными оксидами (ангидридами кислот) называются такие оксиды, которым соответствуют гидроксиды, относящие к классу кислот. Это, например, CO2, SO3, P2O5, N2O3, Cl2O5, Mn2O7 и т.д. Кислотные оксиды растворяются в воде и щелочах, образуя при этом соль и воду.

Химические свойства кислотных оксидов

1. Взаимодействуют с водой, образуя кислоту:

SO3 + H2O → H2SO4.

Но не все кислотные оксиды непосредственно реагируют с водой (SiO2 и др.).

2. Реагируют с основанными оксидами с образованием соли:

CO2 + CaO → CaCO3

3. Взаимодействуют со щелочами, образуя соль и воду:

CO2 + Ba(OH)2 → BaCO3 + H2O.

В состав амфотерного оксида входит элемент, который обладает амфотерными свойствами. Под амфотерностью понимают способность соединений проявлять в зависимости от условий кислотные и основные свойства. Например, оксид цинка ZnO может быть как основанием, так и кислотой (Zn(OH)2 и H2ZnO2). Амфотерность выражается в том, что в зависимости от условий амфотерные оксиды проявляют либо осно?вные, либо кислотные свойства, например - Al2O3, Cr2O3, MnO2; Fe2O3 ZnO. К примеру, амфотерный характер оксида цинка проявляется при взаимодействии его как с соляной кислотой, так и с гидроксидом натрия:

ZnO + 2HCl = ZnCl 2 + H 2 O

ZnO + 2NaOH = Na 2 ZnO 2 + H 2 O

Так как далеко не все амфотерные оксиды расворимы в воде, то доказать амфотерность таких оксидов заметно сложнее. Например, оксид алюминия (III) в реакции сплавления его с дисульфатом калия проявляет основные свойства а при сплавлении с гидроксидами кислотные:

Al2O3 + 3K2S2O7 = 3K2SO4 + A12(SO4)3

Al2O3 + 2KOH = 2KAlO2 + H2O

У различных амфотерных оксидов двойственность свойств может быть выражена в различной степени. Например, оксид цинка одинаково легко растворяется и в кислотах, и в щелочах, а оксид железа (III) - Fe2O3 - обладает преимущественно основными свойствами.

Химические свойства амфотерных оксидов

1. Взаимодействуют с кислотами, образуя соль и воду:

ZnO + 2HCl → ZnCl2 + H2O.

2. Реагируют с твёрдыми щелочами (при сплавлении), образуя в результате реакции соль - цинкат натрия и воду:

ZnO + 2NaOH → Na2 ZnO2 + H2O.

При взаимодействии оксида цинка с раствором щелочи (того же NaOH) протекает другая реакция:

ZnO + 2 NaOH + H2O => Na2.

Координационное число - характеристика, которая определяет число ближайших частиц: атомов или инов в молекуле или кристалле. Для каждого амфотерного металла характерно свое координационное число. Для Be и Zn - это 4; Для и Al - это 4 или 6; Для и Cr - это 6 или (очень редко) 4;

Амфотерные оксиды обычно не растворяются в воде и не реагируют с ней.

Способы получения оксидов из простых веществ - это либо прямая реакция элемента с кислородом:

либо разложение сложных веществ:

а) оксидов

4CrO3 = 2Cr2O3 + 3O2-

б) гидроксидов

Ca(OH)2 = CaO + H2O

в) кислот

H2CO3 = H2O + CO2-

CaCO3 = CaO +CO2

А также взаимодействие кислот - окислителей с металлами и неметаллами:

Cu + 4HNO3 (конц) = Cu(NO3) 2 + 2NO2 + 2H2O

Оксиды могут быть получены при непосредственном взаимодействии кислорода с другим элементом, так и косвенным путём (например, при разложении солей, оснований, кислот). В обычных условиях оксиды бывают в твёрдом, жидком и газообразном состоянии, этот тип соединений весьма распространён в природе. Оксиды содержатся в Земной коре. Ржавчина, песок, вода, углекислый газ - это оксиды.

Основания - это сложные вещества, в молекулах которых атомы металла соединены с одной или несколькими гидроксильными группами.

Основания - это электролиты, которые при диссоциации образуют в качестве анионов только гидроксид-ионы.

NaOH = Na + + OH -

Ca(OH)2 = CaOH + + OH - = Ca 2 + + 2OH -

Существует несколько признаков классификации оснований:

В зависимости от растворимости в воде основания делят на щёлочи и нерастворимые. Щелочами являются гидроксиды щелочных металлов (Li, Na, K, Rb, Cs) и щелочноземельных металлов (Ca, Sr, Ba). Все остальные основания являются нерастворимыми.

В зависимости от степени диссоциации основания делятся на сильные электролиты (все щёлочи) и слабые электролиты (нерастворимые основания).

В зависимости от числа гидроксильных групп в молекуле основания делятся на однокислотные (1 группа ОН), например, гидроксид натрия, гидроксид калия, двухкислотные (2 группы ОН), например, гидроксид кальция, гидроксид меди(2), и многокислотные.

Химические свойства.

Ионы ОН - в растворе определяют щелочную среду.

Растворы щелочей изменяют окраску индикаторов:

Фенолфталеин: бесцветный ® малиновый,

Лакмус: фиолетовый ® синий,

Метилоранж: оранжевый ® жёлтый.

Растворы щелочей взаимодействуют с кислотными оксидами с образованием солей тех кислот, которые соответствуют реагирующим кислотным оксидам. В зависимости от количества щёлочи образуются средние или кислые соли. Например, при взаимодействии гидроксида кальция с оксидом углерода(IV) образуются карбонат кальция и вода:

Ca(OH)2 + CO2 = CaCO3? + H2O

А при взаимодействии гидроксида кальция с избытком оксида углерода (IV) образуется гидрокарбонат кальция:

Ca(OH)2 + CO2 = Ca(HCO3)2

Ca2+ + 2OH- + CO2 = Ca2+ + 2HCO32-

Все основания взаимодействуют с кислотами с образованием соли и воды, например: при взаимодействии гидроксида натрия с соляной кислотой образуются хлорид натрия и вода:

NaOH + HCl = NaCl + H2O

Na+ + OH- + H+ + Cl- = Na+ + Cl- + H2O

Гидроксид меди (II) растворяется в соляной кислоте с образованием хлорида меди (II) и воды:

Cu(OH)2 + 2HCl = CuCl2 + 2H2O

Cu(OH)2 + 2H+ + 2Cl- = Cu2+ + 2Cl- + 2H2O

Cu(OH)2 + 2H+ = Cu2+ + 2H2О.

Реакция между кислотой и основанием называется реакцией нейтрализации.

Нерастворимые основания при нагревании разлагаются на воду и соответствующий основанию оксид металла, например:

Cu(OH)2 = CuO + H2 2Fe(OH)3 = Fe2O3 + 3H2O

Щёлочи вступают во взаимодействие с растворами солей, если выполняется одно из условий протекания реакции ионного обмена до конца (выпадает осадок),

2NaOH + CuSO4 = Cu(OH)2? + Na2SO4

2OH- + Cu2+ = Cu(OH)2

Реакция протекает за счёт связывания катионов меди с гидроксид-ионами.

При взаимодействии гидроксида бария с раствором сульфата натрия образуется осадок сульфата бария.

Ba(OH)2 + Na2SO4 = BaSO4? + 2NaOH

Ba2+ + SO42- = BaSO4

Реакция протекает за счёт связывания катионов бария и и сульфат-анионов.

Кислоты - это сложные вещества, в состав молекул которых входят атомы водорода, способные замещаться или обмениваться на атомы металла и кислотный остаток.

По наличию или отсутствию кислорода в молекуле кислоты делятся на кислородсодержащие (H2SO4 серная кислота, H2SO3 сернистая кислота, HNO3 азотная кислота, H3PO4 фосфорная кислота, H2CO3 угольная кислота, H2SiO3 кремниевая кислота) и бескислородные (HF фтороводородная кислота, HCl хлороводородная кислота (соляная кислота), HBr бромоводородная кислота, HI иодоводородная кислота, H2S сероводородная кислота).

В зависимости от числа атомов водорода в молекуле кислоты кислоты бывают одноосновные (с 1 атомом Н), двухосновные (с 2 атомами Н) и трехосновные (с 3 атомами Н).

К И С Л О Т Ы

Часть молекулы кислоты без водорода называется кислотным остатком.

Кислотные остатки могут состоять из одного атома (-Cl, -Br, -I) - это простые кислотные остатки, а могут - из группы атомов (-SO3, -PO4, -SiO3) - это сложные остатки.

В водных растворах при реакциях обмена и замещения кислотные остатки не разрушаются:

H2SO4 + CuCl2 → CuSO4 + 2 HCl

Слово ангидрид означает безводный, то есть кислота без воды. Например,

H2SO4 - H2O → SO3. Бескислородные кислоты ангидридов не имеют.

Своё название кислоты получают от названия образующего кислоту элемента (кислотообразователя) с прибавлением окончаний «ная» и реже «вая»: H2SO4 - серная; H2SO3 - угольная; H2SiO3 - кремниевая и т.д.

Элемент может образовать несколько кислородных кислот. В таком случае указанные окончания в названии кислот будут тогда, когда элемент проявляет высшую валентность (в молекуле кислоты большое содержание атомов кислорода). Если элемент проявляет низшую валентность, окончание в названии кислоты будет «истая»: HNO3 - азотная, HNO2 - азотистая.

Кислоты можно получать растворением ангидридов в воде. В случае, если ангидриды в воде не растворимы, кислоту можно получить действием другой более сильной кислоты на соль необходимой кислоты. Этот способ характерен как для кислородных так и бескислородных кислот. Бескислородные кислоты получают так же прямым синтезом из водорода и неметалла с последующим растворением полученного соединения в воде:

H2 + Cl2 → 2 HCl;

Растворы полученных газообразных веществ HCl и H2S и являются кислотами.

При обычных условиях кислоты бывают как в жидком, так и в твёрдом состоянии.

Химические свойства кислот

1. Растворы кислот действуют на индикаторы. Все кислоты (кроме кремниевой) хорошо растворяются в воде. Специальные вещества - индикаторы позволяют определить присутствие кислоты.

Индикаторы - это вещества сложного строения. Они меняют свою окраску в зависимоти от взаимодействия с разными химическими веществами. В нейтральных растворах — они имеют одну окраску, в растворах оснований - другую. При взаимодействии с кислотой они меняют свою окраску: индикатор метиловый оранжевый окрашивается в красный цвет, индикатор лакмус - тоже в красный цвет.

2. Взаимодействуют с основаниями с образованием воды и соли, в которой содержится неизменный кислотный остаток (реакция нейтрализации):

H2SO4 + Ca(OH)2 → CaSO4 + 2 H2O.

3. Взаимодействуют с основанными оксидами с образованием воды и соли. Соль содержит кислотный остаток той кислоты, которая использовалась в реакции нейтрализации:

H3PO4 + Fe2O3 → 2 FePO4 + 3 H2O.

4. Взаимодействуют с металлами.

Для взаимодействия кислот с металлами должны выполнятся некоторые условия:

1. Металл должен быть достаточно активным по отношению к кислотам (в ряду активности металлов он должен располагаться до водорода). Чем левее находится металл в ряду активности, тем интенсивнее он взаимодействует с кислотами;

К, Са, Na, Мn, Аl, Zn, Fе, Ni, Sn, РЬ, Н2, Сu, Нg, Аg, Аu.

А вот реакция между раствором соляной кислоты и медью невозможна, так как медь стоит в ряду напряжений после водорода.

2. Кислота должна быть достаточно сильной (то есть способной отдавать ионы водорода H+).

При протекании химических реакций кислоты с металлами образуется соль и выделяется водород (кроме взаимодействия металлов с азотной и концентрированной серной кислотами,):

Zn + 2HCl → ZnCl2 + H2;

Cu + 4HNO3 → CuNO3 + 2 NO2 + 2 H2O.

Однако, какими бы разными ни были кислоты, все они образуют при диссоциации катионы водорода, которые и обусловливают ряд общих свойств: кислый вкус, изменение окраски индикаторов (лакмуса и метилового оранжевого), взаимодействие с другими веществами.

Так же реакция протекает между оксидами металлов и большинством кислот

CuO+ H2SO4 = CuSO4+ H2O

Опишем реакции:

2) При второй реакции должна получиться растворимая соль. Во многих случаях взаимодействие металла с кислотой практически не происходит потому, что образующаяся соль нерастворима и покрывает поверхность металла зашитной пленкой, например:

Рb + H2SO4 =/ PbSO4 + H2

Нерастворимый сульфат свинца (II) прекращает доступ кислоты к металлу, и реакция прекращается, едва успев начаться. По данной причине большинство тяжелых металлов практически не взаимодействует с фосфорной, угольной и сероводородной кислотами.

3) Третья реакция характерна для растворов кислот, поэтому-нерастворимые кислоты, например кремниевая, не вступают в реакции с металлами. Концентрированный раствор серной кислоты и раствор азотной кислоты любой концентрации взаимодействуют с металлами несколько иначе, поэтому уравнения реакций между металлами и этими кислотами записываются подругой схеме. Разбавленный раствор серной кислоты взаимодействует с металлами. стоящими в ряду напряжении до водорода, образуя соль и водород.

4) Четвертая реакция является типичной реакцией ионного обмена п протекает только в том случае, если образуется осадок или газ.

Соли - это сложные вещества, молекулы которых, состоят из атомов металлов и кислотных остатков (иногда могут содержать водород). Например, NaCl - хлорид натрия, СаSO4 - сульфат кальция и т. д.

Практически все соли являются ионными соединениями, поэтому в солях между собой связаны ионы кислотных остатков и ионы металла:

Na+Cl - хлорид натрия

Ca2+SO42 - сульфат кальция и т.д.

Соль является продуктом частичного или полного замещения металлом атомов водорода кислоты.

Отсюда различают следующие виды солей:

1. Средние соли - все атомы водорода в кислоте замещены металлом: Na2CO3, KNO3 и т.д.

2. Кислые соли - не все атомы водорода в кислоте замещены металлом. Разумеется, кислые соли могут образовывать только двух- или многоосновные кислоты. Одноосновные кислоты кислых солей давать не могут: NaHCO3, NaH2PO4 ит. д.

3. Двойные соли - атомы водорода двух- или многоосновной кислоты замещены не одним металлом, а двумя различными: NaKCO3, KAl(SO4)2 и т.д.

4. Соли основные можно рассматривать как продукты неполного, или частичного, замещения гидроксильных групп оснований кислотными остатками: Аl(OH)SO4 , Zn(OH)Cl и т.д.

По международной номенклатуре название соли каждой кислоты происходит от латинского названия элемента. Например, соли серной кислоты называются сульфатами: СаSO4 - сульфат кальция, Mg SO4 - сульфат магния и т.д.; соли соляной кислоты называются хлоридами: NaCl - хлорид натрия, ZnCI2 - хлорид цинка и т.д.

В название солей двухосновных кислот добавляют частицу «би» или «гидро»: Mg(HCl3)2 - бикарбонат или гидрокарбонат магния.

При условии, что в трехосновной кислоте замещён на металл только один атом водорода, то добавляют приставку «дигидро»: NaH2PO4 - дигидрофосфат натрия.

Соли - это твёрдые вещества, обладающие самой различной растворимостью в воде.

Химические свойства солей определяются свойствами катионов и анионов, которые входят в их состав.

1. Некоторые соли разлагаются при прокаливании:

CaCO3 = CaO + CO2

2. Взаимодействуют с кислотами с образованием новой соли и новой кислоты. Для осуществление этой реакции необходимо, чтобы кислота была более сильная чем соль, на которую воздействует кислота:

2NaCl + H2 SO4 → Na2SO4 + 2HCl.

3. Взаимодействуют с основаниями, образуя новую соль и новое основание:

Ba(OH)2 + Mg SO4 → BaSO4↓ + Mg(OH)2.

4. Взаимодействуют друг с другом с образованием новых солей:

NaCl + AgNO3 → AgCl + NaNO3 .

5. Взаимодействуют с металлами, которые стоят в раду активности до металла, который входит в состав соли.

Химические свойства солей

Соли следует рассматривать в виде продукта взаимодействия кислоты и основания. В итоге могут образовываться:

  1. нормальные (средние) - образуются при достаточном для полного взаимодействия количестве кислоты и основания. Названия нормальных соле й состоят из двух частей. В начале называется анион (кислотный остаток), затем катион.
  2. кислые - образуются при избытке кислоты и недостаточном количестве щелочи, потому как при этом катионов металла становится недостаточно для замещения всех катионов водорода, имеющихся в молекуле кислоты. В составе кислотных остатков данного вида солей вы всегда увидите водород. Кислые соли образуются только многоосновными кислотами и проявляют свойства как солей, так и кислот. В названиях кислых солей ставится приставка гидро- к аниону.
  3. основные соли - образуются при избытке основания и недостаточном количестве кислоты, потому как в данном случае анионов кислотных остатков недостаточно для полного замещения гидроксогрупп, имеющихся в основании. основные соли в составе катионов содержат гидроксогруппы. Основные соли возможны для многокислотных оснований, а для однокислотных нет. Некоторые основные соли способны самостоятельно разлагаться, при этом выделяя воду, образуя оксосоли, обладающие свойствами основных солей. Название основных солей строится следующим образом: к аниону добавляется приставка гидроксо- .

Типичные реакции нормальных солей

  • С металлами реагируют хорошо. При этом, более активные металлы вытесняют менее активные из растворов их солей.
  • С кислотами, щелочами и другими солями реакции проходят до конца, при условии образования осадка, газа или малодиссоциируемых соединений.
  • В реакциях солей со щелочами образуются такие вещества, как гидроксид никеля (II) Ni(OH) 2 – осадок; аммиак NH 3 – газ; вода H 2 О – слабый электролит, малодиссоциируемое соединение:
  • Соли реагируют между собой, если образуется осадок или в случае образования более устойчивого соединения.
  • Многие нормальные соли разлагаются при нагревании с образованием двух оксидов – кислотного и основного
  • Нитраты разлагаются другим, отличным от остальных нормальных солей образом. При нагревании нитраты щелочных и щелочноземельных металлов выделяют кислород и превращаются в нитриты:
  • Нитраты почти всех других металлов разлагаются до оксидов:
  • Нитраты некоторых тяжелых металлов (серебра, ртути и др) разлагаются при нагревании до металлов:

Типичные реакции кислых солей

  • Они вступают во все те реакции, в которые вступают кислоты. Со щелочами реагируют, если в составе кислой соли и щелочи имеется один и тот же металл, то в результате образуется нормальная соль.
  • Если же щелочь содержит другой металл, то образуются двойные соли.

Типичные реакции основных солей

  • Данные соли вступают в те же реакции, что и основания. С кислотами реагируют, если в составе основной соли и кислоты имеется один и тот же кислотный остаток, то в результате образуется нормальная соль.
  • Если же кислота содержит другой кислотный остаток, то образуются двойные соли.

Комплексные соли - соединение, в узлах кристаллической решетки которого содержатся комплексные ионы.

Каждый день мы сталкиваемся с солями и даже не задумываемся, какую роль они играют в нашей жизни. А ведь без них и вода была бы не такой вкусной, и пища не приносила бы удовольствия, и растения не росли, да и жизнь на земле не могла бы существовать, не будь в нашем мире соли. Так что же это за вещества и какие свойства солей делают их незаменимыми?

Что такое соли

По своему составу это самый многочисленный класс, отличающийся разнообразием. Еще в 19 веке химик Й. Верцелиус дал определение соли — это продукт реакции между кислотой и основанием, при которой водородный атом заменяется металлическим. В воде обычно соли диссоциируют на металл или аммоний (катион) и кислотный остаток (анион).

Получить соли можно следующими способами:

  • путем взаимодействия металла и неметалла, в этом случае она будет бескислородная;
  • при взаимодействии металла с кислотой получается соль и выделяется водород;
  • металл может вытеснять другой металл из раствора;
  • при взаимодействии двух оксидов — кислотного и основного (еще их называют оксидом неметалла и оксидом металла соответственно);
  • при реакции оксида металла и кислоты получаются соль и вода;
  • реакция между основанием и оксидом неметалла также дает соль и воду;
  • с помощью реакции ионного обмена, при этом могут реагировать разные растворимые в воде вещества (основания, кислоты, соли), но протекать реакция будет, если образуется газ, вода или соли слаборастворимые (нерастворимые) в воде.

Только от химического состава свойства солей и зависят. Но для начала разберемся в их классах.

Классификация

В зависимости от состава выделяют следующие классы солей:

  • по содержанию кислорода (кислородсодержащие и бескислородные);
  • по взаимодействию с водой (растворимые, малорастворимые и нерастворимые).

Такая классификация отражает все многообразие веществ не полностью. Современная и наиболее полная классификация, отражающая не только состав, но и свойства солей, представлена в следующей таблице.

Соли
Нормальные Кислые Основные Двойные Смешанные Комплексные
Водород полностью замещен Атомы водорода замещены на металл не полностью Группы оснований замещены на кислотный остаток не полностью В составе два металла и один кислотный остаток В составе один металл и два кислотных остатка Сложные вещества, состоящие из комплексного катиона и аниона или катиона и комплексного аниона
NaCl KHSO 4 FeOHSO 3 KNaSO 4 CaClBr SO 4

Физические свойства

Как бы ни был широк класс этих веществ, но общие физические свойства солей выделить возможно. Это вещества немолекулярного строения, с ионной кристаллической решеткой.

Очень высокие точки плавления и кипения. При нормальных условиях все соли не проводят электричество, но в растворе большинство из них прекрасно проводит ток.

Цвет может быть самым разным, он зависит от иона металла, входящего в ее состав. Сульфат железа (FeSO 4) — зеленый, хлорид железа (FeCl 3) — темно-красный, а хромат калия (K 2 CrO 4) красивого ярко-желтого цвета. Но большинство солей все-таки бесцветные или белые.

Растворимость в воде также бывает различной и зависит от состава ионов. В принципе, все физические свойства солей имеют особенность. Они зависят от того, ион какого металла и какой кислотный остаток включены в состав. Продолжим рассматривать соли.

Химические свойства солей

Здесь тоже есть важная особенность. Как и физические, химические свойства солей зависят от их состава. А также от того, к какому классу они относятся.

Но общие свойства солей можно все-таки выделить:

  • многие из них разлагаются при нагревании с образованием двух оксидов: кислотного и основного, а бескислородные — металла и неметалла;
  • взаимодействуют соли и с другими кислотами, но реакция идет, только если в составе соли кислотный остаток слабой или летучей кислоты или в результате получается нерастворимая соль;
  • взаимодействие со щелочью возможно, если катион образует нерастворимое основание;
  • возможна реакция и между двумя разными солями, но только если одна из вновь образовавшихся солей не растворяется в воде;
  • может происходить и реакция с металлом, но она возможна, только если брать металл, расположенный правее в ряду напряжения от металла, содержащегося в соли.

Химические свойства солей, относящихся к нормальным, рассмотрены выше, другие же классы реагируют с веществами несколько иначе. Но отличие идет только по продуктам на выходе. В основном все химические свойства солей сохраняются, как и требования к протеканию реакций.

Для того чтобы ответить на вопрос, что такое соль, обычно долго задумываться не приходится. Это химическое соединение в повседневной жизни встречается достаточно часто. Об обычной поваренной соли и говорить не приходится. Подробное внутреннее строение солей и их соединений изучает неорганическая химия.

Определение соли

Четкий ответ на вопрос, что такое соль, можно найти в трудах М. В. Ломоносова. Такое имя он присвоил хрупким телам, которые могут растворяться в воде и не воспламеняются под воздействием высоких температур или открытого огня. Позднее определение выводили не из их физических, а из химических свойств данных веществ.

Школьные учебники неорганической химии дают достаточно ясное понятие того, что такое соль. Так называются продукты замещения химической реакции, при которой атомы водорода кислоты в соединении замещаются на металл. Примеры типичных соединений солей: NaCL, MgSO 4 . Легко увидеть, что любую эту запись можно разделить на две половины: в левой составляющей формулы всегда будет записан металл, а в правой - кислотный остаток. Стандартная формула соли выглядит следующим образом:

Me n m Кислотный остаток m n .

Физические свойства соли

Химия, как точная наука, вкладывает в название того или иного вещества всю возможную информацию о его составе и возможностях. Так, все наименования солей в современной интерпретации состоят из двух слов: одна часть имеет название металлического составляющего в именительном падеже, вторая - содержит описание кислотного остатка.

Эти соединения не имеют молекулярного строения, поэтому при обычных условиях они представляют собой твердые кристаллические вещества. Многие соли обладают кристаллической решеткой. Кристаллы этих веществ тугоплавки, поэтому для их плавления нужны очень высокие температуры. Например, сульфид бария плавится при температуре около 2200 о С.

По растворимости соли делятся на растворимые, малорастворимые и нерастворимые. Примером первых могут служить хлорид натрия, нитрат калия. К малорастворимым относят сульфит магния, хлорид свинца. Нерастворимые - это карбонат кальция. Информация о растворимости того или иного вещества содержится в справочной литературе.

Рассматриваемый продукт химической реакции обычно не имеет запаха и обладает разным вкусом. Предположение о том, что все соли соленые - ошибочно. Чистый соленый вкус имеет только один элемент этого класса - наша старая знакома поваренная соль. Существуют сладкие соли бериллия, горькие - магния и безвкусные - например, карбонат кальция (мел обыкновенный).

Большинство данных веществ бесцветно, но среди них имеются и такие, которые имеют характерные окрасы. Например, железа (II) сульфат отличается характерным зеленым цветом, калия перманганат - фиолетовый, а кристаллы хромата калия - ярко-желтые.

Классификация соли

Химия разделяет все виды неорганических солей на несколько основных признаков. Соли, получающиеся при полном замещении водорода в кислоте, называют нормальными или средними. Например, сульфат кальция.

Соль, которая является производной от реакции неполного замещения, называется кислой или основной. Примером такого образования может быть реакция гидросульфата калия:

Основная соль получается при такой реакции, в которой гидроксогруппа не полностью замещается на кислотный остаток. Вещества данного вида могут быть образованны теми металлами, чья валентность равна двум или больше. Типичная формула соли этой группы может быть выведена из такой реакции:

Нормальные, средние и кислые химические соединения образуют классы солей и являются стандартной классификацией этих соединений.

Двойная и смешанная соль

Примером смешанной является кальциевая соль соляной и хлорноватистой кислоты: CaOCl 2.

Номенклатура

Соли, образованные металлами с переменной валентностью, имеют дополнительное обозначение: после формулы в скобках пишут римскими цифрами валентность. Так, существует сульфат железа FeSO 4 (II) и Fe 2 (SO4) 3 (III). В названии солей имеется приставка гидро-, если в ее составе существуют незамещенные атомы водорода. Например, гидрофосфат калия обладает формулой K 2 HPO 4 .

Свойства солей в электролитах

Теория электролитической диссоциации дает собственное толкование химическим свойствам. В свете этой теории соль может быть определена как слабый электролит, который в растворенном виде диссоциирует (распадается) в воде. Таким образом, раствор соли можно представить как комплекс положительных отрицательных ионов, причем первые - это не атомы водорода Н + , а вторые - не атомы гидроксогруппы ОН - . Ионов, которые присутствовали бы во всех видах растворов солей, не существует, поэтому какими-либо общими свойствами они не обладают. Чем меньше заряды ионов, образующих раствор соли, тем лучше они диссоциируют, тем лучше электропроводимость такой жидкой смеси.

Растворы кислых солей

Кислые соли в растворе распадаются на сложные отрицательные ионы, представляющие собой кислотный остаток, и простые анионы, являющиеся положительно заряженными частицами металла.

Например, реакция растворения гидрокарбоната натрия ведет к распаду соли на ионы натрия и остаток НСО 3 - .

Полная формула выглядит таким образом: NaHCO 3 = Na + + HCO 3 - , HCO 3 - = H + + CO 3 2- .

Растворы основных солей

Диссоциация основных солей ведет к образованию анионов кислоты и сложных катионов, состоящих из металлов и гидроксокрупп. Эти сложные катионы, в свою очередь, также способны распадаться в процессе диссоциации. Поэтому в любом растворе соли основной группы присутствуют ионы ОН - . Например, диссоциация хлорида гидроксомагния протекает следующим образом:

Распространение солей

Что такое соль? Этот элемент является одним из самых распространенных химических соединений. Всем известны поваренная соль, мел (карбонат кальция) и прочее. Среди солей карбонатной кислоты самым распространенным является карбонат кальция. Он является составной частью мрамора, известняка, доломита. А еще карбонат кальция — основа для формирования жемчуга и кораллов. Это химическое соединение является неотъемлемой составляющей для формирования твердых покровов у насекомых и скелетов у хордовых животных.

Поваренная соль известна нам с детства. Врачи предостерегают от ее чрезмерного употребления, но в умеренных количествах она крайне необходима для осуществления жизненных процессов в организме. А нужна она для поддержания правильного состава крови и вырабатывания желудочного сока. Физрастворы, неотъемлемая часть инъекций и капельниц, есть не что иное, как раствор поваренной соли.

Что такое соли?

Соли – это такие сложные вещества, которые состоят из атомов металла и кислотных остатков. В некоторых случаях соли в своем составе могут содержать водород.

Если мы внимательно подойдем к рассмотрению этого определения, то заметим, что по своему составу соли чем-то похожи на кислоты, только с той разницей, что кислоты состоят из атомов водорода, а соли содержат ионы металла. Из этого следует, что соли являются продуктами замещения атомов водорода в кислоте на ионы металла. Так, к примеру, если взять известную каждому поваренную соль NaCl, то ее можно рассматривать как продукт замещения водорода в соляной кислоте НС1 на ион натрия.

Но бывают и исключения. Взять, например, соли аммония, в них кислотные остатки с частицей NH4+, а не с атомами металла.

Типы солей



А теперь давайте более подробно рассмотрим классификацию солей.

Классификация:

К кислым солям относятся такие, в которых атомы водорода в кислоте частично заменены атомами металла. Их можно получить с помощью нейтрализации основания избытком кислоты.
К средним солям или как их еще нормальным, относятся такие соли, у которых в молекулах кислоты все атомы водорода замещены на атомы металла, например, таких, как Na2CO3, KNO3 и т.д.
К основным солям относятся те, где у которых происходить неполное или частичное замещение гидроксильных групп оснований кислотными остатками, такими, как: Аl(OH)SO4 , Zn(OH)Cl и т.д.
В составе двойных солей находится два различных катиона, которые получаются с помощью кристаллизации из смешанного раствора солей с разными катионами, но одинаковыми анионами.
Но, а к смешанным солям относятся такие, в составе которых находятся два различных аниона. Также существуют комплексные соли, в состав которых входит комплексный катион или комплексный анион.

Физические свойства солей



Мы уже с вами знаем, что соли являются твердыми веществами, но следует знать, им свойственна различная растворимость в воде.

Если рассматривать соли с точки зрения растворимости в воде, то их можно поделить на такие группы, как:

Растворимые (Р),
- нерастворимые (Н)
- малорастворимые (М).

Номенклатура солей

Чтобы определить степень растворимости солей, можно обратиться к таблице растворимости кислот, оснований и солей в воде.



Как правило, все названия солее состоят из названий аниона, который представлен в именительном падеже и катиона, который стоит в родительном падеже.

Например: Na2SO4 - сульфат (И.п.) натрия (Р.п.).

Кроме того, для металлов в скобках указывают переменную степень окисления.

Возьмем для примера:

FeSO4 - сульфат железа (II).

Также следует знать, что существует международная номенклатура названия солей каждой кислоты, зависящая от латинского названия элемента. Так, например, соли серной кислоты, называются сульфатами. К примеру, СаSO4 – носит название сульфата кальция. А вот хлоридами называют соли соляной кислоты. Например, всем нам знакомая, NaCl называется хлоридом натрия.

Если же соли двухосновных кислот, то к их названию прибавляют частицу «би» или «гидро».

Например: Mg(HCl3)2 – будет звучать, как бикарбонат или гидрокарбонат магния.

Если в трехосновной кислоте один из атомов водорода заменить на металл, то следует еще добавить приставку «дигидро» и мы получим:

NaH2PO4 – дигидрофосфат натрия.

Химические свойства солей

А сейчас перейдем к рассмотрению химических свойств солей. Дело в том, что они определяются свойствами катионов и анионов, которые входят в их состав.





Значение соли для человеческого организма

В обществе давно идут дискуссии о вреде и пользе соли, которую она оказывает на организм человека. Но какой бы точки зрения не придерживались оппоненты, следует знать, что поваренная соль это минеральное природное вещество, которое жизненно необходимо для нашего организма.

Также следует знать, что при хронической нехватке в организме хлорида натрия, можно получить летальный исход. Ведь, если вспомнить уроки биологии, то нам известно, что тело человека на семьдесят процентов состоит из воды. А благодаря соли происходят процессы регулирования и поддержки водного баланса в нашем организме. Поэтому исключать употребление соли ни в коем случае нельзя. Конечно же, безмерное употребление соли так же ни к чему хорошему не приведет. И тут напрашивается вывод, что все должно быть в меру, так как ее недостаток, также как и избыток могут привести к нарушению баланса в нашем рационе.



Применение солей

Соли нашли свое применение, как в производственных целях, так и в нашей повседневной жизни. А сейчас давайте рассмотрим более детально и узнаем, где и какие соли чаще всего применяются.

Соли соляной кислоты

Из этого вида солей чаще всего используют хлорид натрия и хлорид калия. Поваренную соль, которую мы с вами употребляем в пищу добывают из морской, озерной воды, а также на соляных шахтах. И если хлорид натрия мы употребляем в пищу, то в промышленности его используют для получения хлора и соды. А вот хлорид калия незаменим в сельском хозяйстве. Его применяют, как калийное удобрение.

Соли серной кислоты

Что же касается солей серной кислоты, то они нашли широкое применение в медицине и строительстве. С ее помощью изготавливают гипс.

Соли азотной кислоты

Соли азотной кислоты, или как их еще называют нитраты, применяются в сельском хозяйстве в качестве удобрений. Самыми значимыми среди этих солей является нитрат натрия, нитрат калия, нитрат кальция и нитрат аммония. Их еще называют селитрами.

Ортофосфаты

Среди ортофосфатов, одним из наиболее важных, является ортофосфат кальция. Эта соль входит в основу таких минералов, как фосфориты и апатиты, которые необходимы при изготовлении фосфорных удобрений.

Соли угольной кислоты

Соли угольной кислоты или карбонат кальция можно встретит в природе, в виде мела, известняка и мрамора. Его используют для изготовления извести. А вот карбонат калия применяется, как составляющая сырья при производстве стекла и мыла.

Конечно, о соли вы знаете много интересного, но есть и такие факты, о которых вы вряд ли догадывались.

Вам, наверное, известен тот факт, что на Руси гостей было принято встречать с хлебом и солью, но злили вы, что за соль даже платили налог.

Известно ли вам, что были такие времена, когда соль ценилась больше золота. В древние времена римским воинам даже жалование платили солью. А самым дорогим и важным гостям в знак уважения преподносили горсть соли.

А знаете ли вы, что такое понятие, как «заработная плата» произошло от английского слова salary.

Оказывается, что поваренную соль можно применять в медицинских целях, так как она является отличным антисептиком и обладает ранозаживляющим и бактерицидным свойством. Ведь, наверное, каждый из вас наблюдал, будучи на море, что ранки на коже и мозоли в соленой морской воде заживают намного быстрее.

А знаете, почему зимой в гололед принято посыпать дорожки солью. Оказывается, если на лед насыпать соли, то лед превращается в воду, так как температура ее кристаллизации снизится на 1-3 градуса.

А известно ли вам, сколько соли человек употребляет в течение года. Оказывается, что за год мы с вами съедаем около восьми килограммов соли.

Оказывается, что людям, живущим в жарких странах, нужно употреблять соли в четыре раза больше, чем тем, кто живет в холодных климатических зонах, потому что во время жары выделяется большое количество пота, а с ним и выводятся соли с организма.