Гравитационные волны — открыты! Что означает открытие гравитационных волн для обычного человека

Теперь мы живем во Вселенной заполненной гравитационными волнами.

До исторического заявления в четверг утром от Национального Научного Фонда (ННФ) проводившего встречу в Вашингтоне, были только слухи, что Лазерная Интерферометрическая Гравитационно-волновая Обсерватория (ЛИГО) открыла ключевой компонент Общей Теории Относительности Альберта Эйнштейна, но теперь мы знаем, что реальность глубже, чем мы думали.

С удивительной четкостью, ЛИГО смогли «услышать» момент перед слиянием бинарной системы (две черные дыры вращающиеся друг вокруг друга) в единое целое, создав настолько четкий гравитационно-волновой сигнал в соответствии с теоретической моделью, который не требовал обсуждения. ЛИГО стала свидетелем «перерождения» мощной черной дыры, случившейся около 1,3 миллиарда лет назад.

Гравитационные волны всегда были и всегда будут, проходя через нашу планету (в самом деле, проходя через нас), но только теперь мы знаем, как их находить. Теперь мы открыли глаза на различные космические сигналы, вибрации, вызванные известными энергетическими событиями, и наблюдаем рождение совершенно новой области астрономии.

Звук слияния двух черных дыр:

«Теперь мы можем слышать Вселенную»,- сказала Габриэла Гонсалес, физик и представитель ЛИГО, ВО время триумфального заседания в четверг.- «Обнаружение положило начало новой эры: Область гравитационной астрономии теперь реальность».

Наше место во Вселенной сильно меняется и это открытие может быть основополагающим, как открытие радиоволн и понимание того, что Вселенная расширяется.

Теория Относительности становится более обоснованной

Попытки объяснить, что такое гравитационные волны и почему они так важны, настолько же сложны, как уравнения их описывающие, но их обнаружение не только укрепляет теории Эйнштейна о природе пространства-времени, теперь у нас есть инструмент для зондирования части Вселенной, которая была невидима для нас. Теперь мы можем изучать космические волны, созданные самыми энергичными событиями, происходящими во Вселенной, и, возможно, использовать гравитационные волны для новых физических открытий и исследовать новые астрономические явления.

«Теперь мы должны доказать, что обладаем технологиями, чтобы пойти дальше открытия гравитационных волн, ведь это открывает перед нами много возможностей»,- сказал Льюис Ленер из Института Теоретической Физики в Онтарио, в интервью после заявление в четверг.

Исследование Ленера сфокусированы на плотных объектах (таких как черные дыры), создающих мощные гравитационные волны. Хотя он не связан с сотрудничеством ЛИГО, Ленер быстро осознал всю важность этого исторического открытия. «Не существует сигналов лучше»,- сказал он.

Открытие основано на трех путях, рассуждает он. Во-первых, теперь мы знаем, что гравитационные волны существуют, и мы знаем, как их обнаружить. Во-вторых, сигнал обнаруженный станциями ЛИГО 14 сентября 2015, является сильным свидетельством существования бинарной системы черных дыр, и каждая черная дыра весит несколько десятков масс солнца. Сигнал, это именно то, что мы ожидали увидеть в результате жесткого слияния двух черных дыр, одна весит в 29 раз больше Солнца, а другая в 36 раз. В-третьих, и возможно, самое важное, «возможность отправки в черную дыру», это определенно сильнейшее доказательство существования черных дыр.

Космическая интуиция

Этому событию сопутствовала удача, как и многим другим научным открытиям. ЛИГО является самым большими проектом, финансируемым Национальным Научным Фондом, который стартовал изначально в 2002 году. Оказалось, что после многих лет поиска неуловимого сигнала гравитационных волн, ЛИГО недостаточно чувствителен и в 2010 году обсерватории заморозили, на время работ международного сотрудничества по увеличению их чувствительности. Пять лет спустя, в сентябре 2015, родилась «улучшенная ЛИГО».

В то время, соучредитель ЛИГО и тяжеловес в теоретической физике Кип Торн был уверен в успехе ЛИГО, сказав BBC: «Мы здесь. Мы попали на поле большой игры. И вполне ясно, что мы приоткроем завесу тайны».- И был прав, через несколько дней после реконструкции, всплеск гравитационных волн прокатился по нашей планете, и ЛИГО было достаточно чувствительным, чтобы их обнаружить.

Эти слияния черных дыр, не считаются чем-то особенным; по приблизительным подсчетам такие события происходят каждые 15 минут где-нибудь во Вселенной. Но именно это слияние произошло в нужном месте (на расстоянии 1,3 миллиарда световых лет) в нужное время (1,3 миллиарда лет назад) для улавливания его сигнала обсерваториями ЛИГО. Это был чистый сигнал из Вселенной, и Эйнштейн его предсказал, а его гравитационные волны оказались реальны, описав космическое событие, в 50 раз мощнее мощности всех звезд во Вселенной вместе взятых. Этот огромный взрыв гравитационных волн был записан ЛИГО, как высокочастотный сигнал с линейной частотной модуляцией, в то время, когда черные дыры, двигаясь по спирали, слились в одно целое.

Для подтверждения распространения гравитационных волн, ЛИГО состоит из двух наблюдательных станций, одна в Луизиане, другая в Вашингтоне. Чтобы исключить ложные срабатывания, гравитационно-волновой сигнал должен быть обнаружен на обеих станциях. 14 сентября результат был получен сначала в Луизиане, а через 7 миллисекунд в Вашингтоне. Сигналы совпали, а с помощью триангуляции, физики смогли узнать, что они возникли в небесном пространстве Южного Полушария.

Гравитационные волны: чем они могут быть полезны?

Итак, у нас есть подтверждение сигнала слияния черных дыр, и что с того? Это историческое открытие, что вполне понятно – 100 лет назад Эйнштейн не мог и мечтать об обнаружении этих волн, но это все-таки случилось.

Общая теория относительности была одним из самых глубоких научных и философских осознаний 20-го века и составляет основу самых интеллектуальных исследований в реальности. В астрономии применения общей теории относительности ясны: от гравитационной линзы до измерения расширения Вселенной. Но совсем не ясно практическое применение теорий Эйнштейна, но большая часть современных технологий используют уроки из теории относительности в некоторых вещах, которые считаются простыми. Например, возьмем спутники глобальной навигации, они не будут достаточно точными, если не применять простую корректировку замедления времени (предсказанного теорией относительности).

Совершенно ясно, что у общей теории относительности есть применение в реальном мире, но когда Эйнштейн представил свою теорию в 1916 году, её применение было весьма сомнительным, что казалось очевидным. Он просто соединял Вселенную, в такую, какой он её видел, так и родилась общая теория относительности. А сейчас доказан ещё один компонент теории относительности, но как могут быть использованы гравитационные волны? Астрофизики и космологи определенно заинтригованы.

«После того, как мы собрали данные от пар черных дыр, которые будут играть роль маяков, разбросанных по Вселенной»,- сказал физик-теоретик Неил Турок, директор Института Теоретической Физики в четверг во время видео-презентации.- «Мы сможем измерить скорость расширения Вселенной, или количество темной энергии с чрезвычайной точностью, намного точнее, чем мы можем сегодня».

«Эйнштейн разработал свою теорию с некоторыми подсказками природы, но основанной на логической последовательности. Через 100 лет, вы видите очень точные подтверждения его прогнозов».

Более того, событие 14 сентября имеет некоторые особенности физики, которые ещё нужно будет исследовать. Например, Ленер заметил, что из анализа сигнала гравитационной волны, можно измерить «вращение» или угловой момент слияния черной дыры. «Если вы долго работали над теорией, то должны знать что у черной дыры очень, очень особенное вращение»,- сказал он.

Образование гравитационных волн при слияние двух черных дыр:

По какой-то причине, конечное вращение черной дыры медленнее чем ожидается, указывая на то, что черные дыры сталкиваются на низкой скорости, или они были в таком столкновении, которое вызвало совместный угловой момент, противодействующий друг другу. «Это очень интересно, почему природа это сделала?»,- сказал Ленер.

Эта недавняя загадка, может вернуть к некоторым основам физики, которые не были учтены, но, что более интригующе, может обнаружить «новую», необычную физику, которая не укладывается в общую теорию относительности. И это выявляет другие применения гравитационных волн: так как они создаются сильными гравитационными явлениями, у нас есть возможность зондировать эту среду издалека, с возможными сюрпризами на пути. Кроме того мы могли бы объединить наблюдения астрофизических явлений с электромагнитными силами, чтобы больше понять строение Вселенной.

Применение?

Естественно, после огромных объявлений, сделанных из комплекса научных открытий, много людей не входящих в научное сообщество, интересуются, как они могут повлиять на них. Глубина открытия может потеряться, что, безусловно, касается и гравитационных волн. Но рассмотрим другой случай, когда Вильгельм Рентген в 1895 году обнаружил рентгеновские лучи, во время опытов с электронно-лучевыми трубками, мало кто знает, что только через несколько лет, эти электромагнитные волны станут ключевым компонентом в повседневной медицине от постановки диагноза до лечения. Аналогично, первым экспериментальным созданием радиоволн в 1887 году, Генрих Герц подтвердил известные электромагнитные уравнения Джеймса Клерка Максвелла. Только через время в 90-х годах 20-го века, Гульельмо Маркони, который создал радиопередатчик и радиоприемник, доказал их практическое применение. Также, уравнения Шредингера, описывающие сложный мир квантовой динамики находят применение сейчас в разработке сверхбыстрых квантовых вычислений.

Все научные открытия полезны, и многие, в конечном счете, имеют повседневное применение, которое мы воспринимаем как должное. В настоящее время практическое применение гравитационных волн ограничивается астрофизикой и космологией – теперь у нас есть окно в «темной Вселенной», не видимой электромагнитному излучению. Без сомнения, ученые и инженеры найдут другое применение этим космическим пульсациям, помимо зондирования Вселенной. Тем не менее, для обнаружения этих волн, должны быть хорошие успехи в оптической технике в ЛИГО, в которых со временем будут появляться новые технологии.

Астрофизики подтвердили существование гравитационных волн, существование которых предсказывал еще Альберт Эйнштейн около 100 лет назад. Их удалось зафиксировать с помощью детекторов гравитационно-волновой обсерватории LIGO, которая находится в США.

Впервые в истории человечество зафиксировало гравитационные волны — колебания пространства-времени, пришедшие на Землю от столкновения двух черных дыр, произошедшего далеко во Вселенной. Вклад в это открытие есть и у российских ученых. В четверг исследователи рассказывают о своем открытии по всему миру — в Вашингтоне, Лондоне, Париже, Берлине и других городах, в том числе и в Москве.

На фото имитация столкновения черных дыр

На пресс-конференции в офисе компании Rambler&Co Валерий Митрофанов, руководителю российской части коллаборации LIGO объявил об открытии гравитационных волн:

«Нам выпала честь участвовать в этом проекте и представить результаты вам. Расскажу теперь смысл открытия по-русски. Мы видели прекрасные картинки с изображением детекторов LIGO в США. Расстояние между ними – 3000 км. Под действием гравитационной волны произошел сдвиг одного из детекторов, после чего мы их и обнаружили. Сначала на компьютере мы увидели просто шум, а потом началась раскачка массы детекторов Хэмфорда. После расчетов полученных данных мы смогли определить, что именно черные дыры столкнулись на расстоянии 1,3 млдр. световых лет отсюда. Сигнал был очень четкий, он вылез из шума очень явно. Многие нам сказали, что нам повезло, но природа сделала нам такой подарок. Гравитационные волны открыты – это несомненно.»

Астрофизики подтвердили слухи о том, что с помощью детекторов гравитационно-волновой обсерватории LIGO им удалось зафиксировать гравитационные волны. Это открытие позволит человечеству значительно продвинуться в понимании того, как устроена Вселенная.

Открытие произошло еще 14 сентября 2015 года одновременно двумя детекторами в Вашингтоне и Луизиане. Сигнал поступил на детекторы в результате столкновения двух черных дыр. Столько времени понадобилось ученым для того, чтобы убедиться, что именно гравитационные волны были продуктом столкновения.

Столкновение дыр произошло со скоростью около половины скорости света, а это примерно 150 792 458 м/с.

«Ньютоновская гравитация описывалась в плоском пространстве, а Эйнштейн перевел его в плоскость времени и предположил, что оно его искривляет. Гравитационное взаимодействие очень слабое. На Земле опыт по созданию гравитационных волн невозможен. Обнаружить их смогли только после слияния черных дыр. Смещение детектора произошло, только представьте, на 10 в -19 метра. Руками это не пощупать. Только при помощи очень точных приборов. Как это сделать? Лазерный луч, с помощью которого был зафиксирован сдвиг, уникальный по своей природе. Лазерная гравитационная антенна второго поколения LIGO вступила в строй в 2015 году. Чувствительность позволяет регистрировать гравитационные возмущения примерно раз в месяц. Это передовая мировой и американской науки, ничего точнее в мире нет. Мы надеемся, что он сможет преодолеть Стандартный квантовый предел чувствительности», – пояснил открытие Сергей Вятчанин, сотрудник физфака МГУ и коллаборации LIGO.

Стандартный квантовый предел (СКП) в квантовой механике — ограничение, накладываемое на точность непрерывного или многократно повторяющегося измерения какой-либо величины, описываемой оператором, который не коммутирует сам с собой в разные моменты времени. Предсказан в 1967 году В. Б. Брагинским, а сам термин Стандартный квантовый предел (англ. Standard Quantum Limit, SQL) был предложен позднее Торном. СКП тесно связан с соотношением неопределенностей Гейзенберга.

Подводя итоги Валерий Митрофанов рассказал о планах дальнейших исследований:

«Это открытие – начало новой гравитационно-волновой астрономии. По каналу гравитационных волн мы рассчитываем узнать больше о Вселенной. Нам известен состав только 5% материи, остальное – загадка. Гравитационные детекторы позволят увидеть небо в «гравитационных волнах». В будущем мы надеемся увидеть начало всего, то есть реликтовое излучение Большого взрыва и понять, что именно было тогда».

Впервые гравитационные волны были предложены Альбертом Эйнштейном в 1916 году, то есть почти ровно 100 лет назад. Уравнение для волн является следствием уравнений теории относительности и выводятся не самым простым образом.

Канадский физик-теоретик Клиффорд Берджесс ранее опубликовал письмо, в котором говорится, что обсерватория зафиксировала гравитационное излучение, вызванное слиянием двойной системы черных дыр с массами 36 и 29 солнечных масс в объект массой 62 массы Солнца. Столкновение и несимметричный гравитационный коллапс длятся доли секунды, и за это время в гравитационное излучение — рябь пространства-времени — уходит энергия, составляющая, до 50 процентов от массы системы.

Гравитационная волна — волна гравитации, порождаемая в большинстве теорий тяготения движением гравитирующих тел с переменным ускорением. Ввиду относительной слабости гравитационных сил (по сравнению с прочими) эти волны должны иметь весьма малую величину, с трудом поддающуюся регистрации. Их существование было предсказано около века назад Альбертом Эйнштейном.

Гравитационные волны – изображение художника

Гравитационные волны - возмущения метрики пространства-времени, отрывающиеся от источника и распространяющиеся подобно волнам (так называемая «рябь пространства-времени»).

В общей теории относительности и в большинстве других современных теорий гравитации гравитационные волны порождаются движением массивных тел с переменным ускорением. Гравитационные волны свободно распространяются в пространстве со скоростью света. Ввиду относительной слабости гравитационных сил (по сравнению с прочими) эти волны имеют весьма малую величину, с трудом поддающуюся регистрации.

Поляризованная гравитационная волна

Гравитационные волны предсказываются общей теорией относительности (ОТО), многими другими . Впервые они были непосредственно обнаружены в сентябре 2015 года двумя детекторами-близнецами , на которых были зарегистрированы гравитационные волны, возникшие, вероятно, в результате слияния двух и образования одной более массивной вращающейся чёрной дыры. Косвенные свидетельства их существования были известны с 1970-х годов - ОТО предсказывает совпадающие с наблюдениями темпы сближения тесных систем за счёт потери энергии на излучение гравитационных волн. Прямая регистрация гравитационных волн и их использование для определения параметров астрофизических процессов является важной задачей современной физики и астрономии.

В рамках ОТО гравитационные волны описываются решениями уравнений Эйнштейна волнового типа, представляющими собой движущееся со скоростью света (в линейном приближении) возмущение метрики пространства-времени. Проявлением этого возмущения должно быть, в частности, периодическое изменение расстояния между двумя свободно падающими (то есть не испытывающими влияния никаких сил) пробными массами. Амплитудой h гравитационной волны является безразмерная величина - относительное изменение расстояния. Предсказываемые максимальные амплитуды гравитационных волн от астрофизических объектов (например, компактных двойных систем) и явлений (взрывов , слияний , захватов чёрными дырами и т. п.) при измерениях в весьма малы (h =10 −18 -10 −23). Слабая (линейная) гравитационная волна согласно общей теории относительности переносит энергию и импульс, двигается со скоростью света, является поперечной, квадрупольной и описывается двумя независимыми компонентами, расположенными под углом 45° друг к другу (имеет два направления поляризации).

Различные теории по-разному предсказывают скорость распространения гравитационных волн. В общей теории относительности она равна скорости света (в линейном приближении). В других теориях гравитации она может принимать любые значения, в том числе до бесконечности. По данным первой регистрации гравитационных волн их дисперсия оказалась совместимой с безмассовым гравитоном, а скорость оценена как равная скорости света.

Генерация гравитационных волн

Система из двух нейтронных звезд порождает рябь пространства-времени

Гравитационную волну излучает любая материя, движущаяся с асимметричным ускорением. Для возникновения волны существенной амплитуды необходимы чрезвычайно большая масса излучателя или/и огромные ускорения, амплитуда гравитационной волны прямо пропорциональна первой производной ускорения и массе генератора, то есть ~ . Однако если некоторый объект движется ускоренно, то это означает, что на него действует некоторая сила со стороны другого объекта. В свою очередь, этот другой объект испытывает обратное действие (по 3-му закону Ньютона), при этом оказывается, что m 1 a 1 = − m 2 a 2 . Получается, что два объекта излучают гравитационные волны только в паре, причём в результате интерференции они взаимно гасятся почти полностью. Поэтому гравитационное излучение в общей теории относительности всегда носит по мультипольности характер как минимум квадрупольного излучения. Кроме того, для нерелятивистских излучателей в выражении для интенсивности излучения имеется малый параметр где - гравитационный радиус излучателя, r - его характерный размер, T - характерный период движения, c - скорость света в вакууме.

Наиболее сильными источниками гравитационных волн являются:

  • сталкивающиеся (гигантские массы, очень небольшие ускорения),
  • гравитационный коллапс двойной системы компактных объектов (колоссальные ускорения при довольно большой массе). Как частный и наиболее интересный случай - слияние нейтронных звёзд. У такой системы гравитационно-волновая светимость близка к максимально возможной в природе планковской светимости.

Гравитационные волны, излучаемые системой двух тел

Два тела, движущиеся по круговым орбитам вокруг общего центра масс

Два гравитационно связанных тела с массами m 1 и m 2 , движущиеся нерелятивистски (v << c ) по круговым орбитам вокруг их общего центра масс на расстоянии r друг от друга, излучают гравитационные волны следующей энергии, в среднем за период:

Вследствие этого система теряет энергию, что приводит к сближению тел, то есть к уменьшению расстояния между ними. Скорость сближения тел:

Для Солнечной системы, например, наибольшее гравитационное излучение производит подсистема и . Мощность этого излучения примерно 5 киловатт. Таким образом, энергия, теряемая Солнечной системой на гравитационное излучение за год, совершенно ничтожна по сравнению с характерной кинетической энергией тел.

Гравитационный коллапс двойной системы

Любая двойная звезда при вращении её компонент вокруг общего центра масс теряет энергию (как предполагается - за счёт излучения гравитационных волн) и, в конце концов, сливается воедино. Но для обычных, некомпактных, двойных звёзд этот процесс занимает очень много времени, много большее настоящего возраста . Если же двойная компактная система состоит из пары нейтронных звёзд, чёрных дыр или их комбинации, то слияние может произойти за несколько миллионов лет. Сначала объекты сближаются, а их период обращения уменьшается. Затем на заключительном этапе происходит столкновение и несимметричный гравитационный коллапс. Этот процесс длится доли секунды, и за это время в гравитационное излучение уходит энергия, составляющая по некоторым оценкам более 50 % от массы системы.

Основные точные решения уравнений Эйнштейна для гравитационных волн

Объёмные волны Бонди - Пирани - Робинсона

Эти волны описываются метрикой вида . Если ввести переменную и функцию , то из уравнений ОТО получим уравнение

Метрика Такено

имеет вид , -функции, удовлетворяют тому же уравнению.

Метрика Розена

Где удовлетворяют

Метрика Переса

При этом

Цилиндрические волны Эйнштейна - Розена

В цилиндрических координатах такие волны имеют вид и выполняются

Регистрация гравитационных волн

Регистрация гравитационных волн достаточно сложна ввиду слабости последних (малого искажения метрики). Приборами для их регистрации являются детекторы гравитационных волн. Попытки обнаружения гравитационных волн предпринимаются с конца 1960-х годов. Гравитационные волны детектируемой амплитуды рождаются при коллапсе двойного . Подобные события происходят в окрестностях ориентировочно раз в десятилетие.

С другой стороны, общая теория относительности предсказывает ускорение взаимного вращения двойных звёзд из-за потери энергии на излучение гравитационных волн, и этот эффект надёжно зафиксирован в нескольких известных системах двойных компактных объектов (в частности, пульсаров с компактными компаньонами). В 1993 году «за открытие нового типа пульсаров, давшее новые возможности в изучении гравитации» открывателям первого двойного пульсара PSR B1913+16 Расселу Халсу и Джозефу Тейлору мл. была присуждена Нобелевская премия по физике. Ускорение вращения, наблюдаемое в этой системе, полностью совпадает с предсказаниями ОТО на излучение гравитационных волн. Такое же явление зафиксировано ещё в нескольких случаях: для пульсаров PSR J0737-3039, PSR J0437-4715, SDSS J065133.338+284423.37 (обычно сокращённо J0651) и системы двойных RX J0806. Например, расстояние между двумя компонентами A и B первой двойной звезды из двух пульсаров PSR J0737-3039 уменьшается примерно на 2,5 дюйма (6,35 см) в день из-за потерь энергии на гравитационные волны, причём это происходит в согласии с ОТО. Все эти данные интерпретируются как непрямые подтверждения существования гравитационных волн.

По оценкам наиболее сильными и достаточно частыми источниками гравитационных волн для гравитационных телескопов и антенн являются катастрофы, связанные с коллапсами двойных систем в ближайших галактиках. Ожидается, что в ближайшем будущем на усовершенствованных гравитационных детекторах будет регистрироваться несколько подобных событий в год, искажающих метрику в окрестности на 10 −21 -10 −23 . Первые наблюдения сигнала оптико-метрического параметрического резонанса, позволяющего обнаружить воздействие гравитационных волн от периодических источников типа тесной двойной на излучение космических мазеров, возможно, были получены на радиоастрономической обсерватории РАН, Пущино.

Ещё одной возможностью детектирования фона гравитационных волн, заполняющих Вселенную, является высокоточный тайминг удалённых пульсаров - анализ времени прихода их импульсов, которое характерным образом изменяется под действием проходящих через пространство между Землёй и пульсаром гравитационных волн. По оценкам на 2013 год, точность тайминга необходимо поднять примерно на один порядок, чтобы можно было задетектировать фоновые волны от множества источников в нашей Вселенной, и эта задача может быть решена до конца десятилетия.

Согласно современным представлениям, нашу Вселенную заполняют реликтовые гравитационные волны, появившиеся в первые моменты после . Их регистрация позволит получить информацию о процессах в начале рождения Вселенной. 17 марта 2014 года в 20:00 по московскому времени в Гарвард-Смитсоновском центре астрофизики американской группой исследователей, работающей над проектом BICEP 2, было объявлено о детектировании по поляризации реликтового излучения ненулевых тензорных возмущений в ранней Вселенной, что также является открытием этих реликтовых гравитационных волн. Однако почти сразу этот результат был оспорен, поскольку, как выяснилось, не был должным образом учтён вклад . Один из авторов, Дж. М. Ковац (Kovac J. M. ), признал, что «с интерпретацией и освещением данных эксперимента BICEP2 участники эксперимента и научные журналисты немного поторопились».

Экспериментальное подтверждение существования

Первый зафиксированный гравитационно-волновой сигнал. Слева данные с детектора в Хэнфорде (H1), справа - в Ливингстоне (L1). Время отсчитывается от 14 сентября 2015, 09:50:45 UTC. Для визуализации сигнала он отфильтрован частотным фильтром с полосой пропускания 35-350 Герц для подавления больших флуктуаций вне диапазона высокой чувствительности детекторов, также были применены полосовые режекторные фильтры для подавления шума самих установок. Верхний ряд: напряжения h в детекторах. GW150914 сначала прибыл на L1 и через 6 9 +0 5 −0 4 мс на H1; для визуального сравнения данные с H1 показаны на графике L1 в обращённом и сдвинутом по времени виде (чтобы учесть относительную ориентацию детекторов). Второй ряд: напряжения h от гравитационно-волнового сигнала, пропущенные через такой же полосный фильтр 35-350 Гц. Сплошная линия - результат численной относительности для системы с параметрами, совместимыми с найденными на базе изучения сигнала GW150914, полученный двумя независимыми кодами с результирующим совпадением 99,9. Серые толстые линии - области 90 % доверительной вероятности формы сигнала, восстановленные из данных детекторов двумя различными методами. Тёмно-серая линия моделирует ожидаемые сигналы от слияния чёрных дыр, светло-серая не использует астрофизических моделей, а представляет сигнал линейной комбинацией синусоидально-гауссовых вэйвлетов. Реконструкции перекрываются на 94 %. Третий ряд: Остаточные ошибки после извлечения отфильтрованного предсказания сигнала численной относительности из отфильтрованного сигнала детекторов. Нижний ряд: представление частотной карты напряжений, показывающее возрастание доминирующей частоты сигнала со временем.

11 февраля 2016 года коллаборациями LIGO и VIRGO. Сигнал слияния двух чёрных дыр с амплитудой в максимуме около 10 −21 был зарегистрирован 14 сентября 2015 года в 9:51 UTC двумя детекторами LIGO в Хэнфорде и Ливингстоне через 7 миллисекунд друг от друга, в области максимальной амплитуды сигнала (0,2 секунды) комбинированное отношение сигнал-шум составило 24:1. Сигнал был обозначен GW150914. Форма сигнала совпадает с предсказанием общей теории относительности для слияния двух чёрных дыр массами 36 и 29 солнечных; возникшая чёрная дыра должна иметь массу 62 солнечные и параметр вращения a = 0,67. Расстояние до источника около 1,3 миллиарда , излучённая за десятые доли секунды в слиянии энергия - эквивалент около 3 солнечных масс.

История

История самого термина «гравитационная волна», теоретического и экспериментального поиска этих волн, а также их использования для исследований явлений недоступных иными методам.

  • 1900 - Лоренц предположил, что гравитация «…может распространятся со скоростью, не большей скорости света»;
  • 1905 - Пуанкаре впервые ввёл термин гравитационная волна (onde gravifique). Пуанкаре, на качественном уровне, снял устоявшиеся возражения Лапласа и показал, что связанные с гравитационными волнами поправки к общепринятым законам тяготения Ньютона порядка сокращаются, таким образом, предположение о существовании гравитационных волн не противоречит наблюдениям;
  • 1916 - Эйнштейн показал, что в рамках ОТО механическая система будет передавать энергию гравитационным волнам и, грубо говоря, любое вращение относительно неподвижных звёзд должно рано или поздно остановиться, хотя, конечно, в обычных условиях потери энергии порядка ничтожны и практически не поддаются измерению (в этой работе он ещё ошибочно полагал, что механическая система, постоянно сохраняющая сферическую симметрию, может излучать гравитационные волны);
  • 1918 - Эйнштейн вывел квадрупольную формулу, в которой излучение гравитационных волн оказывается эффектом порядка , тем самым исправив ошибку в своей предыдущей работе (осталась ошибка в коэффициенте, энергия волны в 2 раза меньше);
  • 1923 - Эддингтон - поставил под сомнение физическую реальность гравитационных волн «…распространяются… со скоростью мысли». В 1934 году, при подготовке русского перевода своей монографии «Теория относительности», Эддингтон добавил несколько глав, включая главы с двумя вариантами расчётов потерь энергии вращающимся стержнем, но отметил, что использованные методы приближенных расчётов ОТО, по его мнению, неприменимы к гравитационно связанным системам, поэтому сомнения остаются;
  • 1937 - Эйнштейн совместно с Розеном исследовал цилиндрические волновые решения точных уравнений гравитационного поля. В ходе этих исследований у них возникли сомнения, что гравитационные волны, возможно, являются артефактом приближенных решений уравнений ОТО (известна переписка относительно рецензии на статью Эйнштейна и Розена «Существуют ли гравитационные волны?»). Позднее он нашёл ошибку в рассуждениях, окончательный вариант статьи с фундаментальными правками был опубликован уже в «Journal of the Franklin Institute»;
  • 1957 - Герман Бонди и Ричард Фейнман предложили мысленный эксперимент «трость с бусинками» в котором обосновали существование физических последствий гравитационных волн в ОТО;
  • 1962 - Владислав Пустовойт и Михаил Герценштейн описали принципы использования интерферометров для обнаружения длинноволновых гравитационных волн;
  • 1964 - Филип Петерс и Джон Мэтью теоретически описали гравитационные волны, излучаемые двойными системами;
  • 1969 - Джозеф Вебер, основатель гравитационно-волновой астрономии, сообщает об обнаружении гравитационных волн с помощью резонансного детектора - механической гравитационной антенны. Эти сообщения порождают бурный рост работ в этом направлении, в частности, Ренье Вайс, один из основателей проекта LIGO, начал эксперименты в то время. На настоящий момент (2015) никому так и не удалось получить надёжных подтверждений этих событий;
  • 1978 - Джозеф Тейлор сообщил об обнаружении гравитационного излучения в двойной системе пульсара PSR B1913+16. Исследования Джозефа Тейлора и Рассела Халса заслужили Нобелевскую премию по физике за 1993 год. На начало 2015 года три пост-кеплеровских параметра, включающих уменьшение периода вследствие излучения гравитационных волн, было измерено, как минимум, для 8 подобных систем;
  • 2002 - Сергей Копейкин и Эдвард Фомалонт произвели с помощью радиоволной интерферометрии со сверхдлинной базой измерения отклонения света в гравитационном поле Юпитера в динамике, что для некоторого класса гипотетических расширений ОТО позволяет оценить скорость гравитации - отличие от скорости света не должно превышать 20 % (данная трактовка не общепринята);
  • 2006 - международная команда Марты Бургей (Обсерватория Паркса, Австралия) сообщила о существенно более точных подтверждениях ОТО и соответствия ей величины излучения гравитационных волн в системе двух пульсаров PSR J0737-3039A/B;
  • 2014 - астрономы Гарвард-Смитсоновского центра астрофизики (BICEP) сообщили об обнаружении первичных гравитационных волн при измерениях флуктуаций реликтового излучения. На настоящий момент (2016) обнаруженные флуктуации считаются не имеющими реликтового происхождения, а объясняются излучением пыли в Галактике;
  • 2016 - международная команда LIGO сообщила об обнаружении события прохождения гравитационных волн GW150914. Впервые сообщено о прямом наблюдении взаимодействующих массивных тел в сверхсильных гравитационных полях со сверхвысокими относительными скоростями (< 1,2 × R s , v/c > 0.5), что позволило проверить корректность ОТО с точностью до нескольких постньютоновских членов высоких порядков. Измеренная дисперсия гравитационных волн не противоречит сделанным ранее измерениям дисперсии и верхней границы массы гипотетического гравитона (< 1,2 × 10 −22 эВ), если он в некотором гипотетическом расширении ОТО будет существовать.


Официальным днем открытия (детектирования) гравитационных волн считается 11 февраля 2016 года. Именно тогда, на состоявшейся в Вашингтоне пресс-конференции, руководителями коллаборации LIGO было объявлено, что коллективу исследователей удалось впервые в истории человечества зафиксировать это явление.

Пророчества великого Эйнштейна

О том, что гравитационные волны существуют, еще в начале прошлого века (1916 г.) предположил Альберт Эйнштейн в рамках сформулированной им Общей теории относительности (ОТО). Остается только поражаться гениальным способностям знаменитого физика, который при минимуме реальных данных смог сделать такие далеко идущие выводы. Среди множества прочих предсказанных физических явлений, нашедших подтверждение в последующее столетие (замедление течения времени, изменение направления электромагнитного излучения в гравитационных полях и пр.) практически обнаружить наличие этого типа волнового взаимодействия тел до последнего времени не удавалось.

Гравитация - иллюзия?

Вообще, в свете Теории относительности гравитацию сложно назвать силой. возмущения или искривления пространственно-временного континуума. Хорошим примером, иллюстрирующим данный постулат, может служить натянутый кусок ткани. Под тяжестью размещенного на такой поверхности массивного предмета образуется углубление. Прочие объекты при движении вблизи этой аномалии будут изменять траекторию своего движения, как бы "притягиваясь". И чем больше вес предмета (больше диаметр и глубина искривления), тем выше "сила притяжения". При его движении по ткани, можно наблюдать возникновение расходящейся "ряби".

Нечто подобное происходит и в мировом пространстве. Любая ускоренно движущаяся массивная материя является источником флуктуаций плотности пространства и времени. Гравитационная волна с существенной амплитудой, образуется телами с чрезвычайно большими массами или при движении с огромными ускорениями.

Физические характеристики

Колебания метрики пространство-время проявляют себя, как изменения поля тяготения. Это явление иначе называют пространственно-временной рябью. Гравитационная волна воздействует на встреченные тела и объекты, сжимая и растягивая их. Величины деформации очень незначительны - порядка 10 -21 от первоначального размера. Вся трудность обнаружения этого явления заключалась в том, что исследователям необходимо было научиться измерять и фиксировать подобные изменения с помощью соответствующей аппаратуры. Мощность гравитационного излучения также чрезвычайно мала - для всей Солнечной системы она составляет несколько киловатт.

Скорость распространения гравитационных волн незначительно зависит от свойств проводящей среды. Амплитуда колебаний с удалением от источника постепенно уменьшается, но никогда не достигает нулевого значения. Частота лежит в диапазоне от нескольких десятков до сотен герц. Скорость гравитационных волн в межзвездной среде приближается к скорости света.

Косвенные доказательства

Впервые теоретическое подтверждение существования волн тяготения удалось получить американскому астроному Джозефу Тейлору и его ассистенту Расселу Халсу в 1974 году. Изучая просторы Вселенной с помощью радиотелескопа обсерватории Аресибо (Пуэрто-Рико), исследователи открыли пульсар PSR B1913+16, представляющий собой двойную систему нейтронных звезд, вращающихся вокруг общего центра масс с постоянной угловой скоростью (довольно редкий случай). Ежегодно период обращения, изначально составляющий 3,75 часа, сокращается на 70 мс. Это значение вполне соответствует выводам из уравнений ОТО, предсказывающих увеличение скорости вращения подобных систем вследствие расходования энергии на генерацию гравитационных волн. В дальнейшем было обнаружено несколько двойных пульсаров и белых карликов с аналогичным поведением. Радиоастрономам Д. Тейлору и Р. Халсу в 1993 году была присуждена Нобелевская премия по физике за открытие новых возможностей изучения полей тяготения.

Ускользающая гравитационная волна

Первое заявление о детектировании волн тяготения поступило от ученого Мэрилендского университета Джозефа Вебера (США) в 1969 году. Для этих целей он использовал две гравитационные антенны собственной конструкции, разнесенные на расстояние в два километра. Резонансный детектор представлял собой хорошо виброизолированный цельный двухметровый цилиндр из алюминия, оснащенный чувствительными пьезодатчиками. Амплитуда, якобы зафиксированных Вебером колебаний оказалась более чем в миллион раз выше ожидаемого значения. Попытки других ученых с помощью подобного оборудования повторить "успех" американского физика положительных результатов не принесли. Через несколько лет работы Вебера в данной области были признаны несостоятельными, но дали толчок развития "гравитационному буму", привлекшему в эту область исследований многих специалистов. Кстати, сам Джозеф Вебер до конца своих дней был уверен, что принимал гравитационные волны.

Совершенствование приемного оборудования

В 70-х годах ученый Билл Фэйрбанк (США) разработал конструкцию гравитационно-волновой антенны, охлаждаемой с применением сквидов - сверхчувствительных магнитомеров. Существующие на тот момент технологии не позволили увидеть изобретателю свое изделие, реализованное в "металле".

По такому принципу выполнен гравитационный детектор Auriga в Национальной леньярской лаборатории (Падуя, Италия). В основе конструкции алюминиево-магниевый цилиндр, длиной 3 метра и диаметром 0,6 м. Приемное устройство массой 2,3 тонны подвешено в изолированной, охлажденной почти до абсолютного нуля вакуумной камере. Для фиксации и детектирования сотрясений используется вспомогательный килограммовый резонатор и измерительный комплекс на основе ЭВМ. Заявленная чувствительность оборудования 10 -20 .

Интерферометры

В основу функционирования интерференционных детекторов гравитационных волн заложены те же принципы, по которым работает интерферометр Майкельсона. Испускаемый источником лазерный луч делится на два потока. После многократных отражений и путешествий по плечам устройства потоки вновь сводятся воедино, и по итоговому судят о том, воздействовали ли на ход лучей какие-либо возмущения (например, гравитационная волна). Подобное оборудование создано во многих странах:

  • GEO 600 (Ганновер, Германия). Длина вакуумных тоннелей 600 метров.
  • ТАМА (Япония) с плечами в 300 м.
  • VIRGO (Пиза, Италия) - совместный франко-итальянский проект, запущенный в 2007 году с трехкилометровыми тоннелями.
  • LIGO (США, Тихоокеанское побережье), ведущий охоту за волнами тяготения с 2002 года.

Последний стоит рассмотреть более подробно.

LIGO Advanced

Проект был создан по инициативе ученых Массачусетского и Калифорнийского технологических институтов. Включает в себя две обсерватории, разнесенные на 3 тыс. км, в и Вашингтон (города Ливингстон и Хэнфорд) с тремя идентичными интерферометрами. Длина перпендикулярных вакуумных тоннелей составляет 4 тыс. метров. Это самые большие на сегодняшний момент действующие подобные сооружения. До 2011 года многочисленные попытки обнаружения волн тяготения никаких результатов не принесли. Проведенная существенная модернизация (Advanced LIGO) повысила чувствительность оборудования в диапазоне 300-500 Гц более чем в пять раз, а в низкочастотной области (до 60 Гц) почти на порядок, достигнув столь вожделенной величины в 10 -21 . Обновленный проект стартовал в сентябре 2015 года, и усилия более чем тысячи сотрудников коллаборации были вознаграждены полученными результатами.

Гравитационные волны обнаружены

14 сентября 2015 года усовершенствованные детекторы LIGO с интервалом в 7 мс зафиксировали дошедшие до нашей планеты гравитационные волны от крупнейшего явления, произошедшего на окраинах наблюдаемой Вселенной - слияния двух крупных черных дыр с массами в 29 и 36 раз превышающими массу Солнца. В ходе процесса, состоявшегося более 1,3 млрд лет назад, за считанные доли секунды на излучение волн тяготения было израсходовано около трех солнечных масс вещества. Зафиксированная начальная частота гравитационных волн составляла 35 Гц, а максимальное пиковое значение достигло отметки в 250 Гц.

Полученные результаты неоднократно подвергались всесторонней проверке и обработке, тщательно отсекались альтернативные интерпретации полученных данных. Наконец, прошлого года о прямой регистрации предсказанного Эйнштейном явления было объявлено мировому сообществу.

Факт, иллюстрирующий титаническую работу исследователей: амплитуда колебаний размеров плеч интерферометров составила 10 -19 м - эта величина во столько же раз меньше диаметра атома, во сколько он сам меньше апельсина.

Дальнейшие перспективы

Сделанное открытие еще раз подтверждает, что Общая теория относительности - не просто набор абстрактных формул, а принципиально новый взгляд на суть гравитационных волн и гравитации в целом.

В дальнейших исследованиях ученые большие надежды возлагают на проект ELSA: создание гигантского орбитального интерферометра с плечами около 5 млн км, способного обнаружить даже незначительные возмущения полей тяготения. Активизация работ в этом направлении способна поведать много нового об основных этапах развития Вселенной, о процессах, наблюдение которых в традиционных диапазонах затруднено или невозможно. Несомненно, что и черные дыры, гравитационные волны которых будут зафиксированы в будущем, многое расскажут о своей природе.

Для изучения реликтового гравитационного излучения, способного рассказать о первых мгновениях нашего мира после Большого Взрыва, потребуются более чувствительные космические инструменты. Такой проект существует (Big Bang Observer ), но его реализация, по заверениям специалистов, возможна не ранее, чем через 30-40 лет.