Реликтовое излучение

Несмотря на применение современных приборов и новейших методов изучения Вселенной, вопрос ее появления все еще остается открытым. В этом нет ничего удивительного, если учесть ее возраст: согласно последним данным, он составляет от 14 до 15 млрд. лет. Очевидно, что с тех пор осталось очень мало свидетельств происходивших когда-то грандиозных процессов Вселенского масштаба. Поэтому утверждать что-либо никто не решается, ограничиваясь гипотезами. Однако одна из них с недавних пор получила весьма существенный аргумент - реликтовое излучение.

В 1964 году два сотрудника одной известной лаборатории, выполнявшие радионаблюдение за спутником «Эхо», имея доступ к соответствующему сверхчувствительному оборудованию, решили проверить некоторые свои теории относительно собственного радиоизлучения определенных космических объектов.

Для того чтобы отсеять возможные помехи от наземных источников, было решено использовать в 7,35 см. Однако после включения и настройки антенны было зарегистрировано странное явление: во всей Вселенной фиксировался некий шум, постоянная фоновая составляющая. Она не зависела ни от положения Земли относительно других планет, что сразу отсеяло предположение о радиопомехах этих ни от времени суток. Ни Р. Вилсон, ни А. Пензиас даже не догадывались, что открыли реликтовое излучение вселенной.

Так как никто из них не предполагал подобного, списывая «фон» на особенности аппаратуры (достаточно вспомнить, что используемая СВЧ-антенна была самой чувствительной в то время), минул почти целый год, пока стало очевидным - регистрируемый шум является частью самой Вселенной. Интенсивность улавливаемого радиосигнала оказалась практически идентичной интенсивности излучения температурой в 3 Кельвина (1 Кельвин равен -273 градуса по Цельсию). Для сравнения: нуль по Кельвину соответствует температуре объекта из неподвижных атомов. находится в пределах от 500 МГц до 500 ГГц.

В это время два теоретика из Принстонского университета - Р. Дикке и Д. Пибблс, основываясь на новых моделях развития Вселенной, математически вычислили, что подобное излучение должно существовать и пронизывать все пространство. Стоит ли говорить, что Пензиас, случайно узнавший о лекциях на эту тему, связался с университетом и сообщил, реликтовое излучение и было зарегистрировано.

Исходя из теории Большого Взрыва, вся материя и возникла в результате колоссального взрыва. Первые 300 тыс. лет после этого пространство представляло собой комбинацию элементарных частиц и излучений. Впоследствии из-за расширения температуры стали падать, что дало возможность появиться атомам. Регистрируемое реликтовое излучение - это отголосок тех далеких времен. Пока вселенная обладала границами, плотность частиц была столь высокой, что излучение оказывалось «связанным», так как масса частиц отражала любые виды волн, не позволяя им распространяться. И лишь после начала образования атомов пространство стало «прозрачным» для волн. Считается, что реликтовое излучение появилось именно так. В настоящий момент в каждом кубическом сантиметре пространства содержится около 500 первоначальных квантов, правда, их энергия уменьшилась почти в 100 раз.

Реликтовое излучение на различных участках Вселенной имеет разную температуру. Это обусловлено расположением первичного вещества в расширяющейся Вселенной. Там, где плотность атомов будущей материи была выше, доля излучения, а значит его температура, уменьшена. Именно в этих направлениях впоследствии образовались крупные объекты (галактики и их скопления).

Изучение реликтового излучения приподнимает завесу неизвестности над многими процессами, происходящими в начале времен.

Одним из интересных открытий, связанных с электромагнитным спектром, является реликтовое излучение Вселенной . Открыто оно было случайно, хотя возможность его существования была предсказана.

История открытия реликтового излучения

История открытия реликтового излучения началась в 1964 году. Сотрудники американской лаборатории Белл Телефон разрабатывали систему связи с помощью искусственного спутника Земли. Работать эта система должна была на волнах длиной 7,5 сантиметра. Столь короткие волны применительно к спутниковой радиосвязи имеют некоторые преимущества, но до Арно Пензиаса и Роберта Уилсона никто этой проблемы не решал.

Они были первооткрывателями в этой сфере и должны были позаботиться о том, чтобы на той же волне не оказалось сильных помех, или чтобы о таких помехах работники связи знали заранее. В то время считали, что источником радиоволн, идущих из космоса, могут быть лишь точечные объекты вроде радиогалактик или звезд .

Источники радиоволн

В распоряжении ученых были исключительно точный приемник и поворотная рупорная антенна. С их помощью ученые могли прослушать весь небесный свод примерно так, как врач прослушивает грудь больного с помощью стетоскопа.

Сигнал природного источника

И вот едва антенну навели на одну из точек небосвода, как на экране осциллографа заплясала кривая линия. Типичный сигнал природного источника . Наверное, специалисты удивились своему везению: в первой же замеренной точке - источник радиоизлучения!

Но куда бы они ни направляли свою антенну, эффект оставался тот же. Ученые вновь и вновь проверяли исправность аппаратуры, но она была в полном порядке. И наконец они поняли, что открыли неизвестное ранее явление природы: вся Вселенная оказалась как бы наполнена радиоволнами сантиметровой длины .

Если бы мы могли видеть радиоволны, небесный свод представился бы нам светящимся от края до края.


Открытие Пензиаса и Уилсона было опубликовано. И уже не только они, а и учёные многих других стран начали поиски источников таинственных радиоволн, улавливаемых всеми приспособленными для этой цели антеннами и приемниками, где бы они ни находились и на какую бы точку неба ни нацеливались, причем интенсивность радиоизлучения на волне 7,5 сантиметра в любой точке была абсолютно одинаковой, оно словно бы размазано по всему небу равномерно.

Реликтовое излучение рассчитано учеными

Советские ученые А. Г. Дорошкевич и И. Д. Новиков, предсказавшие реликтовое излучение до его открытия, произвели сложнейшие подсчеты . Они учли все имеющиеся в нашей Вселенной источники излучения, учли и то, как изменилось излучение тех или иных объектов во времени. И оказалось, что в области сантиметровых волн все эти излучения минимальны и, следовательно, за обнаруженное свечение неба никак не ответственны.

Между тем дальнейшие расчеты показали, что плотность размазанного излучения очень велика. Вот сравнение фотонного киселя (так назвали ученые загадочное излучение) с массой всей материи по Вселенной.

Если все вещество всех видимых Галактик равномерно «размазать» по всему пространству Вселенной, то на три кубических метра пространства придется лишь один атом водорода (для простоты всю материю звезд будем считать водородом). И в то же время в каждом кубическом сантиметре реального пространства содержится около 500 фотонов излучения.

Немало, даже если сравнивать не количество единиц вещества и излучения, а прямо их массы. Откуда же взялось столь интенсивное излучение?

В свое время советский ученый А. А. Фридман, решая знаменитые уравнения Эйнштейна, открыл, что наша Вселенная находится в постоянном расширении . Вскоре было найдено подтверждение этому.

Американец Э. Хаббл обнаружил явление разбегания Галактик . Экстраполируя это явление в прошлое, можно вычислить момент, когда все вещество Вселенной находилось в весьма малом объеме и плотность его была несравненно большей, чем сейчас. В ходе расширения Вселенной происходит и удлинение длины волны каждого кванта пропорционально расширению Вселенной; при этом квант как бы «охлаждается» - ведь чем меньше длина волны
кванта, тем он «горячее».

Сегодняшнее сантиметровое излучение имеет яркостную температуру около 3 градусов абсолютной шкалы Кельвина. А десять миллиардов лет назад, когда Вселенная была несравненно меньшей, а плотность ее вещества очень большой, эти кванты обладали температурой порядка 10 миллиардов градусов.

С тех пор и «засыпана» наша Вселенная квантами непрерывно остывающего излучения. Потому-то «размазанное» по Вселенной сантиметровое радиоизлучение и получило название
реликтовое излучение.

Реликтами , как известно, называются остатки древнейших животных и растений, сохранившихся до наших дней. Кванты сантиметрового излучения - безусловно, самый древний из всех возможных реликтов. Ведь образование их относится к эпохе, отстоящей от нас примерно на 15 миллиардов лет.

Знание о Вселенной принесло реликтовое излучение

Практически ничего нельзя сказать о том, каким было вещество в нулевой момент, когда его плотность была бесконечно большой. Но явления и процессы, происходившие во Вселенной , всего через секунду после ее рождения и даже раньше, до 10~8 секунды, ученые представляют себе уже довольно хорошо. Сведения об этом принесло именно реликтовое излучение .

Итак, прошла секунда с нулевого момента. Материя нашей Вселенной имела температуру 10 миллиардов градусов и состояла из своеобразной «каши» реликтовых квантов, электродов, позитронов, нейтрино и антинейтрино . Плотность «каши» была огромной - более тонны на каждый кубический сантиметр. В такой «тесноте» непрерывно происходили столкновения нейтронов и позитронов с электронами, протоны превращались в нейтроны и наоборот.

Но больше всего было тут именно квантов - в 100 миллионов раз больше, чем нейтронов и протонов. Конечно, при подобной плотности и температуре не могли существовать никакие сложные ядра вещества: они тут не распадались.

Прошло сто секунд. Расширение Вселенной продолжалось, плотность ее непрерывно уменьшалась, температура падала. Позитроны почти исчезли, нейтроны превратились в протоны.

Началось образование атомных ядер водорода и гелия. Расчеты, проведенные учеными, показывают, что 30 процентов нейтронов объединились, образуя ядра гелия, 70 же процентов их остались одинокими, стали ядрами водорода. В ходе этих реакций возникали новые кванты, но их количество не шло уже ни в какое сравнение с первоначальным, так что можно считать, что оно и вовсе не изменялось.

Расширение Вселенной продолжалось. Плотность «каши», столь круто заваренной природой вначале, снижалась пропорционально кубу линейного расстояния. Проходили годы, столетия, тысячелетия.

Прошло 3 миллиона лет. Температура «каши» к этому моменту упала до 3-4 тысяч градусов, плотность вещества также приблизилась к известной нам сегодня, однако сгустки материи, из которых могли бы сложиться звезды и Галактики, возникнуть еще не могли. Слишком велико было в то время лучевое давление, расталкивавшее любое такое образование. Даже атомы гелия и водорода оставались ионизированными: электроны существовали отдельно, протоны и ядра атомов - также отдельно.

Только к концу трехмиллионнолетнего периода в остывающей «каше» начали появляться первые сгущения. Их было поначалу очень немного. Едва одна тысячная часть «каши» сгустилась в своеобразные протозвезды, как эти образования начали «гореть» аналогично современным звездам.

И исторгаемые ими фотоны и кванты энергии разогрели начавшую было остывать «кашу» до температур, при которых образование новых сгущений опять оказалось невозможным.

Периоды остывания и повторного разогревания «каши» вспышками протозвезд чередовались, сменяя друг друга. А на каком-то этапе расширения Вселенной образование новых сгущений стало практически невозможным уже потому, что некогда столь густая «каша» слишком «разжижилась».

Примерно 5 процентов материи успело объединиться, а 95 процентов рассеялось в пространстве расширяющейся Вселенной. Так «рассеялись» и некогда горячие кванты, образовавшие реликтовое излучение. Так рассеялись и ядра атомов водорода и гелия, которые входили в состав «каши».

Гипотеза образования Вселенной

Вокруг некоторых из этих звезд образовались системы планет, по крайней мере, на одной из таких планет возникла жизнь, в ходе эволюции породившая разум. Как часто встречаются в просторах космоса звезды, окруженные хороводом планет, ученые пока еще не знают. Ничего не могут они сказать и о том, как часто .


Да и вопрос о том, как часто растение жизни расцветает пышным цветком разума, остается открытым. Известные нам сегодня гипотезы, трактующие все эти вопросы, больше похожи на малообоснованные догадки.

Но сегодня наука развивается лавинообразно. Совсем недавно ученые вообще не представляли себе, как начиналась наша . Открытое около 70 лет назад реликтовое излучение позволило нарисовать ту картину. Сегодня у человечества не хватает фактов, опираясь на которые, оно сможет ответить на сформулированные выше вопросы.

Проникновение в космическое пространство, посещения Луны и других планет, приносят новые факты. А за фактами следуют уже не гипотезы, а строгие выводы.

Реликтовое излучение говорит об однородности Вселенной

О чем еще рассказали ученым реликтовые лучи, эти свидетели рождения нашей Вселенной?

А. А. Фридман решил одно из уравнений, данных Эйнштейном, и на основе этого решения открыл расширение Вселенной. Для того чтобы решить уравнения Эйнштейна, надо было задать так называемые начальные условия.

Фридман исходил из предположения, что Вселенная однородна и изотропна, что вещество в ней распределено равномерно. И в течение 5-10 лет, прошедших со дня открытия Фридмана, вопрос о том, правильно ли было это его предположение, оставался открытым.

Сейчас он по существу снят. Об изотропности Вселенной свидетельствует удивительная равномерность реликтового радиоизлучения. Второй факт свидетельствует о том же - распределение вещества Вселенной между Галактиками и межгалактическим газом.


Ведь межгалактический газ, составляющий основную часть вещества Вселенной, распределен по ней столь же равномерно, как и реликтовые кванты .

Открытие реликтового излучения дает возможность заглянуть не только в сверхдалекое прошлое - за такие пределы времени, когда не было ни нашей Земли, ни нашего Солнца, ни нашей Галактики, ни даже самой Вселенной.

Как удивительный телескоп, который можно направить в любую сторону, открытие реликтового излучения позволяет заглянуть и в сверхдалекое будущее. Такое сверхдалекое, когда уже не будет ни Земли, ни Солнца, ни Галактики.

Здесь поможет явление расширения Вселенной, то как разлетаются в пространстве слагающие ее звезды, Галактики, облака пыли и газа. Вечен ли этот процесс? Или же разлет замедлится, остановится, а затем сменится сжатием? И не являются ли сменяющие друг друга сжатия и расширения Вселенной своеобразными пульсациями материи, не уничтожимой
и вечной?

Ответ на эти вопросы зависит в первую очередь от того, сколько материи содержится во Вселенной. Если ее общего тяготения достаточно, чтобы преодолеть инерцию разлета, то расширение неизбежно сменится сжатием, при котором Галактики постепенно сблизятся. Ну а если сил гравитации для торможения и преодоления инерции разлета недостаточно, наша Вселенная обречена: она рассеется в пространстве!

> Что такое реликтовое излучение?

Открытие реликтового излучения : значение понятия, теория Большого Взрыва, расширение и карта Вселенной, движение света в пространстве, влияние темной материи.

Реликтовое излучение – послесвечение Большого Взрыва. Это одно из наиболее убедительных доказательств того, что это событие было во Вселенной. Лучше всего его объясняет Нед Райт из Калифорнийского университета (Лос-Анджелес).

Насколько полезно реликтовое излучение?

«Ну, наиболее полезная информация поступает на низком уровне. Когда я только начинал заниматься астрономией, не было 100% уверенности в достоверности теории Большого Взрыва. Поэтому наличие реликтового излучения в этой теории и отсутствие в конкурирующей заполнило большой пробел в знаниях.

Кроме того, спектр реликтового излучения сильно напоминает черный. Раз это темное тело, то мы можем полагать, что Вселенная плавно переходила от непрозрачности к прозрачности. Дипольная анизотропия микроволнового фона помогает точно определить факт, что мы движемся в пространстве. Одна небесная сторона намного жарче, а вторая холоднее, что намекает на температуру реликтового излучения. При подсчетах выясняется, что мы передвигаемся на десятую часть от процента скорости света – 370 км/с. Так что есть наше движение и передвижение сквозь Вселенную.

Спутник Планка позволил получить больше информации по линиям фонового реликтового излучения. У нас есть разница в 3 милликельвина, то есть различие в температуре пятен составляет +/- 100 микроквинов. Поэтому вам открывается детализированный рисунок области размером в 1.5 градусов. Он создается волновой акустикой, которая формируется из-за возмущения плотности в раннем этапе развития Вселенной. Можно даже проследить, как много времени прошло, прежде чем Вселенная станет прозрачной. И это важная информация, если вы решились изучать такую глобальную отрасль».

Что нам говорит реликтовое излучение и темная материя

«Реликтовое излучение имеет шаблон на шкале в 0.5 градусов, открывая нам эффективную линию позиции, вроде астрономической навигации. Вы измеряете одну звезду с секстантом и получаете линию своего нахождения. Но если смотрите на одну и ту же модель (установка акустической волны), то видите, что в распределении галактик все более локально. Конечно, речь идет об удаленных объектах, но в космологии это локальные территории.

Эти галактики демонстрируют одинаковый волнообразный узор, и вы можете измерить его, сравнить с тем, что наблюдается в прошлом, и получить линию пересечения позиции. Это помогает определить наше место во Вселенной, отыскать и даже подсчитать множество объектов. Также становится ясно, что существует темная энергия, которую никто пока не может понять, но мы знаем, на какие действия она способна. Ведь именно она ускоряет расширение». Вы сможете узнать еще много интересного про реликтовое излучение Вселенной (обнаружение, расширение Вселенной, большой взрыв, красное смещение, аномалии), если посмотрите видео.

Поляризация реликтового излучения

Физик Дмитрий Горбунов об эксперименте BICEP2, стадии инфляции и развитии теории гравитации:

Аномалии реликтового излучения

Астрофизик Олег Верходанов о низких мультиполях, влиянии объектов ближнего космоса на космологические измерения и учете ненайденных источников:


Микроволновое фоновое излучение (реликтовое излучение)

- космич. излучение, имеющее спектр, характерный для при темп-ре ок. ЗК; определяет интенсивность фонового излучения Вселенной в коротковолновом радиодиапазоне (на сантиметровых, миллиметровых и субмиллиметровых волнах). Характеризуется высочайшей степенью изотропии (интенсивность практически одинакова во всех направлениях). Открытие М. ф. и. (А. Пензиас, Р. Вильсон, 1965 г., США) подтвердило т.н. , дало важнейшее экспериментальное свидетельство в пользу представлений об изотропии расширения Вселенной и её однородности в больших масштабах (см. ).

Согласно модели горячей Вселенной, вещество расширяющейся Вселенной имело в прошлом намного более высокую плотность, чем сейчас, и чрезвычайно высокую темп-ру. При Т > 10 8 К первичная , состоявшая из протонов, ионов гелия и электронов, непрерывно излучающих, рассеивающих и поглощающих фотоны, находилась в полном с излучением. В ходе последующего расширения Вселенной темп-ра плазмы и излучения падала. Взаимодействие частиц с фотонами уже не успевало за характерное время расширения заметно влиять на спектр излучения ( Вселенной по тормозному излучению к этому времени стала много меньше единицы). Однако даже при полном отсутствии взаимодействия излучения с веществом в ходе расширения Вселенной чернотельный спектр излучения остаётся чернотельным, уменьшается лишь темп-ра излучения. Пока темп-ра превышала 4000 К, первичное вещество было полностью ионизовано, пробег фотонов от одного акта рассеяния до др. был много меньше . При 4000 К произошла протонов и электронов, плазма превратилась в смесь нейтральных атомов водорода и гелия, Вселенная стала полностью прозрачной для излучения. В ходе её дальнейшего расширения темп-ра излучения продолжала падать, но чернотельный характер излучения сохранился как реликт, как "память" о раннем периоде эволюции мира. Это излучение обнаружили сначала на волне 7,35 см, а затем и на др. волнах (от 0,6 мм до 50 см).

Темп-ра М. ф. и. с точностью до 10% оказалась равной 2,7 К. Ср. энергия фотонов этого излучения крайне мала - в 3000 раз меньше энергии фотонов видимого света, но число фотонов М. ф. и. очень велико. На каждый атом во Вселенной приходится ~ 10 9 фотонов М. ф. и. (в среднем 400-500 фотонов в 1 см 3).

Наряду с прямым методом определения темп-ры М. ф. и. - по кривой распределения энергии в спектре излучения (см. ), существует также косвенный метод - по населённости нижних уровней энергии молекул в межзвёздной среде. При поглощении фотона М. ф. и. молекула переходит из осн. состояния в возбуждённое. Чем выше темп-ра излучения, тем выше плотность фотонов с энергией, достаточной для возбуждения молекул, и тем большая их доля находится на возбуждённом уровне. По количеству возбуждённых молекул (населённости уровней) можно судить о темп-ре возбуждающего излучения. Так, наблюдения оптич. линий поглощения межзвёздного циана (CN) показывают, что его нижние уровни энергии населены так, как будто молекулы CN находятся в поле трёхградусного чернотельного излучения. Этот факт был установлен (но не понят в полной мере) ещё в 1941 г., задолго до обнаружения М. ф. и. прямыми наблюдениями.

Ни звёзды и радиогалактики, ни горячий межгалактич. газ, ни переизлучение видимого света межзвёздной пылью не могут дать излучения, приближающегося по св-вам к М. ф. и.: суммарная энергия этого излучения слишком велика, и спектр его не похож ни на спектр звёзд, ни на спектр радиоисточников (рис. 1). Этим, а также практически полным отсутствием флуктуации интенсивности по небесной сфере (мелкомасштабных угловых флуктуации) доказывается космологич., реликтовое происхождение М. ф. и.

Флуктуации М. ф. и.
Обнаружение небольших различии в интенсивности М. ф. и., принимаемого от разных участков небесной сферы, позволило бы сделать ряд выводов о характере первичных возмущении в веществе, приведших в дальнейшем к образованию галактик и скоплений галактик. Современные галактики и их скопления образовались в результате роста незначительных по амплитуде неоднородностей плотности вещества, существовавших до рекомбинации водорода во Вселенной. Для любой космологич. модели можно найти закон роста амплитуды неоднородностей в ходе расширения Вселенной. Если знать, каковы были амплитуды неоднородности вещества в момент рекомбинации, можно установить, за какое время они могли вырасти и стать порядка единицы. После этого области с плотностью, значительно превышающей среднюю, должны были выделиться из общего расширяющегося фона и дать начало галактикам и их скоплениям. "Рассказать" об амплитуде начальных неоднородностей плотности в момент рекомбинации может лишь реликтовое излучение. Поскольку до рекомбинации излучение было жёстко связано с веществом (электроны рассеивали фотоны), то неоднородности в пространственном распределении вещества приводили к неоднородностям плотности энергии излучения, т. е. к различию темп-ры излучения в разных по плотности областях Вселенной. Когда после рекомбинации вещество перестало взаимодействовать с излучением и стало для него прозрачным, М. ф. и. должно было сохранить всю информацию о неоднородпостях плотности во Вселенной в период рекомбинации. Если неоднородности существовали, то темп-ра М. ф. и. должна флуктуировать, зависеть от направления наблюдения. Однако эксперименты по обнаружению ожидаемых флуктуации пока не обладают достаточно высокой точностью. Они дают лишь верхние пределы значений флуктуации. В малых угловых масштабах (от одной угловой минуты до шести градусов дуги) флуктуации не превышают 10 -4 К. Поиски флуктуации М. ф. и. осложняются также тем, что вклад во флуктуации фона дают дискретные космич. радиоисточники, флуктуирует излучение атмосферы Земли и т. д. Эксперименты в больших угловых масштабах также показали, что темп-ра М. ф. и. практически не зависит от направления наблюдения: отклонения не превышают К. Полученные данные позволили снизить оценку степени анизотропии расширения Вселенной в 100 раз по сравнению с оценкой по данным прямых наблюдений "разбегающихся" галактик.

М. ф. и. как "новый эфир".
М. ф. и. изотропно лишь в системе координат, связанной с "разбегающимися" галактиками, в т.н. сопутствующей системе отсчёта (эта система расширяется вместе с Вселенной). В любой др. системе координат интенсивность излучения зависит от направления. Этот факт открывает возможность измерения скорости движения Солнца относительно системы координат, связанной с М. ф. и. Действительно, в силу Доплера, эффекта фотоны, распространяющиеся навстречу движущемуся наблюдателю, имеют более высокую энергию, нежели догоняющие его, несмотря на то, что в системе, связанной с М. ф. и., их энергии равны. Поэтому и темп-ра излучения для такого наблюдателя оказывается зависящей от направления: , где T 0 - ср. по небу темп-ра излучения, v - скорость наблюдателя, - угол между вектором скорости и направлением наблюдения.

Дипольная анизотропия реликтового излучения, связанная с движением Солнечной системы относительно поля этого излучения, к настоящему времени твердо установлена (рис. 2): в направлении на созвездие Льва темп-ра М. ф. и. на 3,5 мК превышает среднюю, а в противоположном направлении (созвездие Водолея) на столько же ниже средней. Следовательно, Солнце (вместе с Землёй) движется относительно М. ф. и. со скоростью ок. 400 км/с по направлению к созвездию Льва. Точность наблюдений столь высока, что экспериментаторы фиксируют скорость движения Земли вокруг Солнца, составляющую 30 км/с. Учёт скорости движения Солнца вокруг центра Галактики позволяет определить скорость движения Галактики относительно М. ф. и. Она составляет 600 км/с. В принципе, существует метод, позволяющий определить скорости богатых скоплений галактик относительно реликтового излучения (см. ).

Спектр М. ф. и.
На рис. 1 приведены существующие экспериментальные данные о М. ф. и. и планковская кривая распределения энергии в спектре равновесного излучения абсолютно чёрного тела, имеющего темп-ру 2,7 К. Положения экспериментальных точек хорошо согласуются с теоретич. кривой. Это служит веским подтверждением модели горячей Вселенной.

Отметим, что в диапазоне сантиметровых и дециметровых волн измерения темп-ры М. ф. и. возможны с поверхности Земли при помощи радиотелескопов. В миллиметровом и особенно в субмиллиметровом диапазонах излучение атмосферы препятствует наблюдениям М. ф. и., поэтому измерения проводятся широкополосными , установленными на воздушных шарах (баллонах) и ракетах. Ценные данные о спектре М. ф. и. в миллиметровой области получены из наблюдений линий поглощения молекул межзвездной среды в спектрах горячих звезд. Выяснилось, что осн. вклад в плотность энергии М. ф. и. даёт излучение с от 6 до 0,6 мм, темп-ра к-рого близка к 3 К. В этом диапазоне длин волн плотность энергии М. ф. и. =0,25 эВ/см 3 .

Многие из космологич. теорий и теорий образования галактик, к-рые рассматривают процессы вещества и антивещества, диссипацию развитой , крупномасштабных потенциальных движений, испарение первичных малой массы, распад нестабильных , предсказывают значит. энерговыделение на ранних стадиях расширения Вселенной. В то же время любое выделение энергии align="absmiddle" width="127" height="18"> на этапе, когда темп-ра М. ф. и. менялась от до 3 К, должно было заметно исказить его чернотельный спектр. Т.о., спектр М. ф. и. несёт информацию о тепловой истории Вселенной. Более того, эта информация оказывается дифференцированной: выделение энергии на каждом из трёх этапов расширения ( K; 3Т 4000 К). Таких энергичных фотонов крайне мало (~10 -9 от общего их числа). Поэтому рекомбинационное излучение, возникающее при образовании нейтральных атомов, должно было сильно исказить спектр М. ф. и. на волнах 250 мкм.

Ещё один нагрев вещество могло испытать при образовании галактик. Спектр М. ф. и. при этом также мог измениться, поскольку рассеяние реликтовых фотонов на горячих электронах увеличивает энергию фотонов (см. ). Особенно сильные изменения происходят в этом случае в коротковолновой области спектра. Одна из кривых, демонстрирующих возможное искажение спектра М. ф. и., приведена на рис. 1 (штриховая кривая). Имеющиеся изменения в спектре М. ф. и. показали, что вторичный разогрев вещества во Вселенной произошел много позже рекомбинации.

М. ф. и. и космические лучи.

Космич. лучи (протоны и ядра высоких энергий; ультрарелятивнстские электроны, определяющие радиоизлучение нашей и др. галактик в метровом диапазоне) несут информацию о гигантских взрывных процессах в звездах и ядрах галактик, при к-рых они рождаются. Как оказалось, время жизни частиц высоких энергий во Вселенной во многом зависит от фотонов М. ф. и., обладающих малой энергией, но чрезвычайно многочисленных - их в миллиард раз больше, чем атомов во Вселенной (это соотношение сохраняется в процессе расширения Вселенной). При столкновении ультрарелятивистских электронов космич. лучей с фотонами М. ф. и. происходит перераспределение энергии и импульса. Энергия фотона возрастает во много раз, и радиофотон превращается в фотон рентг. излучения, энергия же электрона меняется незначительно. Поскольку этот процесс повторяется многократно, электрон постепенно теряет всю энергию. Наблюдаемое со спутников и ракет рентг. фоновое излучение, по-видимому, частично обязано своим происхождением этому процессу.

Протоны и ядра сверхвысоких энергий также подвержены воздействию фотонов М. ф. и.: при столкновениях с ними ядра расщепляются, а соударения с протонами приводят к рождению новых частиц (электрон-позитронных пар, -мезонов и т.д.). В результате энергия протонов быстро уменьшается до пороговой, ниже к-рой рождение частиц становится невозможным по законам сохранения энергии и импульса. Именно с этими процессами связывают практич. отсутствие в космич. лучах частиц с энергией 10 20 эВ, а также малое количество тяжёлых ядер.

Лит.:
Зельдович Я.Б., "Горячая" модель Вселенной, УФН, 1966, т. 89, в. 4, с. 647; Вайнберг С., Первые три минуты, пер. с англ., М., 1981.

Открытие реликтового излучения Вселенной

Предисловие

РЕЛИКТОВОЕ ИЗЛУЧЕНИЕ , космическое электромагнитное излучение, приходящее на Землю со всех сторон неба примерно с одинаковой интенсивностью и имеющее спектр, характерный для излучения абсолютно чёрного тела при температуре около 3 К (3 градуса по абсолютной шкале Кельвина, что соответствует –270°C). При такой температуре основная доля излучения приходится на радиово́лны сантиметрового и миллиметрового диапазонов. Плотность энергии реликтового излучения 0,25 эВ/см3 . Радиоастроно́мы-экспериментаторы предпочитают называть это излучение «космическим микроволновы́м фоновым излучением» (М. ф. и.) cosmic microwave background, CMB). Астрофизики-теоретики часто называют его «реликтовым излучением» (термин предложен русским астрофизиком И.С. Шкловским), поскольку в рамках общепринятой сегодня теории горячей Вселенной это излучение возникло на раннем этапе расширения нашего мира, когда его вещество было практически однородным и очень горячим. Далее мы будем называть это излучение «реликтовым». Открытие в 1965 году реликтового излучения имело огромное значение для космологии; оно стало одним из важнейших достижений естествознания двадцатого века и, безусловно, самым важным для космологии после открытия красного смещения в спектрах галактик. Слабое реликтовое излучение несёт нам све́дения о первых мгновениях существования нашей Вселенной, о той далекой эпохе, когда вся Вселенная была горячей и в ней ещё не существовало ни планет, ни звёзд, ни галактик. Проведенные в последние годы детальные измерения этого излучения с помощью наземных, стратосфе́рных и космических обсерваторий приоткрывают завесу над тайной самого́ рождения Вселенной.

Открытие реликтового излучения

В 1960 году́ в Кроуфорд-Хилле, Холмдел (шт. Нью-Джерси, США) была построена антенна для приёма радиосигналов, отраженных от спутника-баллона «Эхо». К 1963 го́ду для работы со спутником эта антенна была уже не нужна, и радиофизики Роберт Вудро Уилсон (р. 1936) и Арно Элан Пензиас (р. 1933) из лаборатории компании «Белл телефон» решили использовать её для радиоастрономических наблюдений. Антенна представляла собой 20-футовый рупор. Вместе с новейшим приёмным устройством этот радиотелескоп был в то время самым чувствительным инструментом в мире для измерения радиоволн, приходящих из космоса.

В первую очередь предполагалось провести измерения радиоизлучения межзвёздной среды́ нашей Галактики на волне длиной 7,35 см. Арно Пе́нзиас и Роберт Уилсон не знали о теории горячей Вселенной и не собирались искать реликтовое излучение. Для точного измерения радиоизлучения Галактики необходимо было учесть все возможные помехи, вызываемые излучением земной атмосферы и поверхности Земли, а также помехи, возникающие в антенне, электрических цепях и приемниках.

Предварительные испытания приемной системы показали несколько больший шум, чем ожидалось по расчётам, но казалось правдоподобным, что это связано с небольшим избытком шума в усилительных цепях. Чтобы избавиться от этих проблем, Пензиас и Уилсон использовали устройство, известное как «холодная нагрузка»: сигнал, приходящий от антенны, сравнивается с сигналом от искусственного источника, охлажденного жидким гелием при температуре около четырех градусов выше абсолютного нуля (4 K) . В обоих случаях электрический шум в усилительных цепях должен быть одинаков, и поэтому полученная при сравнении разница дает мощность сигнала, идущего от антенны. Этот сигнал содержит вклады только от антенного устройства, земной атмосферы и астрономического источника радиоволн, попадающего в поле зрения антенны. Пензиас и Уилсон ожидали, что антенное устройство будет давать очень небольшой электрический шум. Однако, чтобы проверить это предположение, они начали свои наблюдения на сравнительно коротких волнах длиной 7,35 см, на которых радиошум от Галактики должен быть пренебрежимо мал. Естественно, некоторый радиошум ожидался на такой длине волны́ и от земной атмосферы, но этот шум должен был иметь характерную зависимость от направления: он должен быть пропорционален толщине атмосферы в том направлении, в каком смотрит антенна: немного меньше в направлении зенита, чуть больше в направлении горизонта. Ожидалось, что после вычитания атмосферного члена с характерной зависимостью от направления не останется никакого существенного сигнала от антенны и это подтвердит, что электрический шум, производимый антенным устройством, пренебрежимо мал. После этого можно будет начать изучение само́й Галактики на больших длинах волн – около 21 см, где излучение Млечного Пути имеет вполне заметное значение.

Микроволново́й шум

К своему удивлению, Пензиас и Уилсон обнаружили весной 1964 , что они принимают на длине волн 7,35 см довольно заметное количество микроволнового шума, не зависящего от направления. Они нашли, что этот «статический фон» не меняется в зависимости от времени суток, а позднее обнаружили, что он не зависит и от времени года. Следовательно, это не могло быть излучением Галактики, ибо в этом случае его интенсивность менялась бы в зависимости от того, смотрит антенна вдоль плоскости Млечного Пути или поперек. К тому же, если бы это было излучением нашей Галактики, то большая спиральная галактика М 31 в Андромеде, во многих отношениях похожая на нашу, тоже должна была бы сильно излучать на волне 7,35 см, а этого не наблюдалось. Отсутствие каких-либо вариаций наблюдаемого микроволново́го шума с направлением весьма серьезно указывало на то, что эти радиово́лны, если они действительно существуют, приходят не от Млечного Пути, а от значительно большего объёма Вселенной. Исследователям было ясно, что необходимо снова проверить, не может ли сама антенна производить больше электрического шума, чем ожидалось. В частности, было известно, что в рупоре антенны угнезди́лась пара голубей. Они были пойманы, отправлены по почте на принадлежащий компании «Белл» участок в Виппани, выпущены на волю, вновь обнаружены несколькими днями спустя на своем месте в антенне, снова пойманы и наконец утихоми́рены более решительными средствами. Однако во время аренды помещения голуби покрыли внутренность антенны тем, что Пензиас назвал «белым диэлектрическим веществом», которое при комнатной температуре могло быть источником электрического шума. В начале 1965 года был демонтирован рупор антенны и вычищена вся грязь, однако это, как и все другие ухищрения, дало очень малое уменьшение наблюдаемого уровня шума.

Когда все источники помех были тщательно проанализированы и учтены́, Пензиас и Уилсон вынуждены были сделать вывод, что излучение приходит из космоса, причем со всех сторон с одинаковой интенсивностью. Оказалось, что пространство излучает так, как будто бы оно нагре́то до температуры 3,5 кельвина (точнее, достигнутая точность позволяла заключить, что «температура космоса» от 2,5 до 4,5 кельвина). Необходимо заметить, что это очень тонкий экспериментальный результат: например, если перед рупором антенны расположить брикет мороженого, то он сиял бы в радиодиапазоне, в 22 млн. раз более ярком, чем соответствующей участок неба. Обдумывая неожиданный результат своих наблюдений, Пензиас и Уилсон не торопились с публикацией. Но события развивались уже помимо их воли. Случилось так, что Пензиас позвонил по совершенно другому поводу своему приятелю Бернарду Берку из Массачусетского технологического института. Незадолго до этого Берк слышал от своего коллеги Кена Тернера из Института Карнеги о докладе, который тот, в свою очередь, слышал в Университете Джонса Хопкинса, сделаланном теоретиком из Принстона Фи́лом Пиблслом, работавшим под руководством Роберта Дикке. В этом докладе Пиблс приводил аргументы в пользу того, что должен существовать фоновый радиошум, оставшийся от ранней Вселенной и имеющий сейчас эквивалентную температуру около 10 K . Пензиас позвонил Дикке, и обе группы исследователей встретились. Роберту Дикке и его коллегам Ф.Пиблсу, П.Роллу и Д.Уилкинсону стало ясно, что А.Пензиас и Р.Уилсон обнаружили реликтовое излучение горячей Вселенной. Ученые решили одновременно опубликовать два письма в престижном «Астрофизическом журнале» («Astrophysical Journal»). Летом 1965 года были опубликованы обе работы: Пензиаса и Уилсона об открытии реликтового излучения и Дикке с коллегами – с его объяснением при помощи теории горячей Вселенной. По-видимому, не до конца убеждённые в космологической интерпретации своего открытия, Пензиас и Уилсон дали своей заметке скромное название: Измерение избыточной антенной температуры на частоте 4080 МГц. Они просто объявили, что «измерения эффективной зенитной температуры шума... дали значение на 3,5 K выше, чем ожидалось», и избежали всяких упоминаний о космологии, за исключением фразы, что «возможное объяснение наблюдаемой избыточной температуры шума дано Дикке, Пиблсом, Роллом и Уилкинсоном в сопутствующем письме в этом же выпуске журнала».

В последующие годы на различных длинах волн от десятков сантиметров до доли миллиметра были проведены многочисленные измерения. Наблюдения показали, что спектр реликтового излучения соответствует формуле Планка, как это и должно быть для излучения с определенной температурой. Подтвердилось, что эта температура примерно равна 3 K . Было сделано замечательное открытие, доказывающее, что Вселенная в начале расширения была горячей. Таково сложное переплетение событий, завершившееся открытием горячей Вселенной Пензиасом и Уилсоном в 1965 году. Установление факта сверхвысокой температуры в начале расширения Вселенной явилось отправной точкой важнейших исследований, ведущих к раскрытию тайн не только астрофизических, но и тайн строения материи. Наиболее точные измерения реликтового излучения проведены из космоса: это эксперимент «Реликт» на советском спутнике «Прогноз-9» (1983–1984) и эксперимент DMR (Differential Microwave Radiometer) на американском спутнике COBE (Cosmic Background Explorer, ноябрь 1989–1993) Именно последний позволил точнее всего определить температуру реликтового излучения: 2,725 ± 0,002 K .

Уважаемые посетители!

У вас отключена работа JavaScript . Включите пожалуйста скрипты в браузере, и вам откроется полный функционал сайта!