Для чего нужны космические ракеты. Научные открытия, которые привели нас в космос: Ракеты. Производители летательных аппаратов

На сегодняшний день Российская Федерация обладает самой мощной в мире космической отраслью. Россия является безоговорочным лидером в области пилотируемой космонавтики и к тому же обладает паритетом с США в вопросах космической навигации. Некоторые отставания нашей страны имеются лишь в исследованиях далеких межпланетных пространств, а также в разработках по дистанционному зондированию Земли.

История

Космическая ракета впервые была задумана российскими учеными Циолковским и Мещерским. Они же в 1897-1903 годах создали теорию ее полета. Намного позже данное направление стали осваивать зарубежные ученые. Это были немцы фон Браун и Оберт, а также американец Годдард. В мирное межвоенное время вопросами реактивного движения, а также создания для этой цели твердотопливных и жидкостных двигателей занимались лишь три страны в мире. Это были Россия, США и Германия.

Уже к 40-м годам 20 века наша страна могла гордиться успехами, достигнутыми в вопросах создания твердотопливных двигателей. Это позволило во время Второй мировой войны использовать такое грозное оружие, как "Катюши". Что касается создания больших ракет, оснащенных жидкостными двигателями, то здесь лидером была Германия. Именно в этой стране на вооружение приняли "Фау-2". Это первые баллистические ракеты, имеющие малую дальность. В период Второй мировой войны "Фау-2" использовали для бомбардировок Англии.

После победы СССР над гитлеровской Германией основная команда Вернера фон Брауна под его непосредственным руководством развернула свою деятельность в США. При этом они забрали с собой из поверженной страны все разработанные ранее чертежи и расчеты, на основании которых должна была быть построена космическая ракета. Только мизерная часть команды немецких инженеров и ученых продолжила свою работу в СССР вплоть до середины 50-х годов 20 века. В их распоряжении были отдельные части технологического оборудования и ракет без каких-либо расчетов и чертежей.

В дальнейшем как в США, так и в СССР были воспроизведены ракеты "Фау-2" (у нас это Р-1), что и предопределило развитие ракетостроения, направленного на увеличение дальности полета.

Теория Циолковского

Этого великого русского ученого-самоучку и выдающегося изобретателя считают отцом космонавтики. Им еще в 1883 году был написана историческая рукопись "Свободное пространство". В этом труде Циолковский впервые высказал мысль о том, что перемещение между планетами возможно, и нужен для этого специальный который называется "космическая ракета". Сама теория реактивного прибора была обоснована им в 1903 г. Она содержалась в труде под названием "Исследование мирового пространства". Здесь автор приводил доказательства того, что космическая ракета является тем аппаратом, с помощью которого можно покинуть пределы земной атмосферы. Эта теория явилась настоящей революцией в научной сфере. Ведь о полете на Марс, Луну и на другие планеты человечество мечтало давно. Однако ученые мужи так и не смогли определить, каким образом должен быть устроен летательный аппарат, который будет перемещаться в абсолютно пустом пространстве без опоры, способной дать ему ускорение. Данная задача была решена Циолковским, который предложил использование для этой цели Только с помощью такого механизма можно было покорить космос.

Принцип действия

Космические ракеты России, США и других стран до настоящего времени выходят на орбиту Земли при помощи ракетных двигателей, предложенных в свое время Циолковским. В этих системах происходит преобразование химической энергии топлива в кинетическую, которой обладает выбрасываемая из сопла струя. Особый процесс происходит в камерах сгорания таких двигателей. В них в результате реакции окислителя и горючего выделяется теплота. При этом продукты сгорания расширяются, нагреваются, разгоняются в сопле и выбрасываются с огромной скоростью. Ракета при этом движется благодаря закону сохранения импульса. Она получает ускорение, которое направлено в противоположную сторону.

На сегодняшний день существуют такие проекты двигателей, как космические лифты, и т. д. Однако на практике они не применяются, так как пока еще находятся в разработке.

Первый космический аппарат

Ракета Циолковского, предложенная ученым, представляла собой металлическую камеру продолговатой формы. Внешне она была похожа на аэростат или дирижабль. Переднее, головное пространство ракеты предназначалось для пассажиров. Здесь же были установлены приборы управления, а также хранились поглотители углекислоты и запасы кислорода. В отсеке для пассажиров предусматривалось освещение. Во второй, основной части ракеты Циолковский расположил горючие вещества. При их смешении происходило образование взрывчатой массы. Она зажигалась в отведенном ей месте в самом центре ракеты и выбрасывалась из расширяющейся трубы с огромной скоростью в виде горячих газов.

В течение долгого времени имя Циолковского было малоизвестно не только за рубежом, но и в России. Многие считали его мечтателем-идеалистом и чудаком-фантазером. Истинную оценку труды этого великого ученого получили только с приходом советской власти.

Создание ракетного комплекса в СССР

Значительные шаги в освоении межпланетного пространства были сделаны после окончания Второй мировой войны. Это было время, когда США, являясь единственной атомной державой, стали оказывать на нашу страну политическое давление. Первоначальной задачей, которая ставилась перед нашими учеными, было наращивание военной мощи России. Для достойного отпора в условиях развязанной в эти годы холодной войны необходимо было создать атомную, а затем и Вторая, не менее сложная задача, состояла в доставке созданного оружия до цели. Для этого и требовались боевые ракеты. С целью создания данной техники уже в 1946 г. правительством были назначены главные конструкторы гироскопических приборов, реактивных двигателей, систем управления и т. д. Ответственным за увязку в единое целое всех систем стал С.П. Королев.

Уже в 1948 г. первая из разработанных в СССР баллистических ракет прошла успешные испытания. Аналогичные полеты в США были осуществлены на несколько лет позже.

Запуск искусственного спутника

Кроме наращивания военного потенциала правительство СССР ставило перед собой задачу освоения космического пространства. Работы в этом направлении велись многими учеными и конструкторами. Еще до того как в воздух поднялась ракета межконтинентальной дальности, разработчикам подобной техники стало понятно, что, сократив полезный груз летательного аппарата, можно было добиться скорости, превышающей космическую. Этот факт говорил о вероятности вывода на земную орбиту искусственного спутника. Данное эпохальное событие произошло 4.10.1957 г. Оно стало началом новой вехи в освоении космического пространства.

Работа по освоению безвоздушного околоземного пространства потребовала огромных усилий со стороны многочисленных коллективов конструкторов, ученых и рабочих. Создатели космических ракет должны были разработать программу вывода летательного аппарата на орбиту, отладить работу наземной службы и т. д.

Перед конструкторами стояла сложная задача. Необходимо было увеличить массу ракеты и сделать возможным достижение ею второй Именно поэтому в 1958-1959 годах в нашей стране был разработан трехступенчатый вариант реактивного двигателя. С его изобретением стало возможным производить первые космические ракеты, в которых на орбиту мог подняться человек. Трехступенчатые двигатели открыли и возможность полета на Луну.

Далее ракеты-носители все более и более усовершенствовались. Так, в 1961 г. была создана четырехступенчатая модель реактивного двигателя. С ним ракета могла достичь не только Луны, но и добраться до Марса или Венеры.

Первый пилотируемый полет

Старт космической ракеты с человеком на борту впервые состоялся 12.04.1961 г. От поверхности Земли оторвался корабль «Восток», пилотируемый Юрием Гагариным. Это событие явилось эпохальным для человечества. В апреле 1961 г. освоение космоса получило свое новое развитие. Переход к пилотируемым полетам потребовал от конструкторов создания таких летательных аппаратов, которые могли бы возвращаться на Землю, безопасно преодолевая слои атмосферы. Кроме того, на космической ракете должна была быть предусмотрена система жизнеобеспечения человека, включающая регенерацию воздуха, питание и многое другое. Все эти задачи были успешно решены.

Дальнейшее освоение космоса

Ракеты типа «Восток» еще долгое время способствовали удержанию ведущей роли СССР в сфере исследования околоземного безвоздушного пространства. Их использование продолжается и до настоящего времени. Вплоть до 1964 года летательные аппараты «Восток» превосходили все существующие аналоги по своей грузоподъемности.

Несколько позже в нашей стране и в США были созданы более мощные носители. Название космических ракет такого типа, сконструированных в нашей стране, - «Протон-М». Американский подобный аппарат - «Дельта-IV». В Европе была сконструирована ракета-носитель «Ариан-5», принадлежащая к тяжелому типу. Все эти летательные аппараты позволяют выводить 21-25 тонн груза на высоту в 200 км, где располагается низкая околоземная орбита.

Новые разработки

В рамках проекта полета человека на Луну были созданы РН, принадлежащие к сверхтяжелому классу. Это такие космические ракеты США, как «Сатурн-5», а также советская Н-1. Позднее в СССР была создана сверхтяжелая ракета «Энергия», которую в настоящее время не используют. Мощным американским РН стал «Спейс шаттл». Эта ракета позволяла выводить на орбиту космические корабли массой в 100 тонн.

Производители летательных аппаратов

Космические ракеты проектировались и создавались в ОКБ-1 (Особом конструкторском бюро), ЦКБЭМ (Центральном конструкторском бюро экспериментального машиностроения), а также в НПО (Научно-производственном объединении) «Энергия». Именно здесь увидели свет отечественные баллистические ракеты всех типов. Отсюда вышли и одиннадцать стратегических комплексов, которые взяла на вооружение наша армия. Усилиями работников данных предприятий была создана и Р-7 - первая космическая ракета, которая считается самой надежной в мире и в настоящее время. С середины прошлого века на этих производствах инициировались и велись работы по всем направлениям, касающимся С 1994 г. предприятие получило новое название, став ОАО РКК «Энергия».

Сегодняшний день производителя космических ракет

РКК «Энергия» им. С.П. Королева является стратегическим предприятием России. Оно играет ведущую роль в разработке и производстве пилотируемых космических систем. Большое внимание на предприятии уделяется вопросам создания новейших технологий. Здесь разрабатываются специализированные автоматические космические системы, а также РН для вывода на орбиту летательных аппаратов. Кроме того, РКК «Энергия» активно внедряет наукоемкие технологии для производства продукции, не относящейся к освоению безвоздушного пространства.

В составе этого предприятия, помимо головного конструкторского бюро, находятся:

ЗАО «Завод экспериментального машиностроения».

ЗАО «ПО «Космос».

ЗАО «Волжское КБ».

Филиал «Байконур».

Самыми перспективными программами предприятия являются:

Вопросы дальнейшего освоения космоса и создания пилотируемой транспортной космической системы новейшего поколения;

Разработка пилотируемых летательных аппаратов, которые способны освоить межпланетные пространства;

Конструирование и создание энергетических и телекоммуникационных космических систем с использованием специальных малогабаритных рефлекторов и антенн.

Вопросы.

1. Основываясь на законе сохранения импульса, объясните, почему воздушный шарик движется противоположно струей выходящего из него сжатого воздуха.

2. Приведите примеры реактивного движения тел.

В природе в качестве примера можно привести реактивное движение у растений: созревшие плоды бешеного огурца; и животных: кальмары, осьминоги, медузы, каракатицы и др. (животные передвигаются, выбрасывая всасываемую ими воду). В технике простейшим примером реактивного движения является сегнеровое колесо , более сложными примерами являются: движение ракет (космических, пороховых, военных), водных средств передвижения с водометным двигателем (гидромотоциклов, катеров, теплоходов), воздушных средств передвижения с воздушно- реактивным двигателем (реактивных самолётов).

3. Каково назначение ракет?

Ракеты используются в различных областях науки и техники: в военном деле, в научных исследованиях, в космонавтике, в спорте и развлечениях.

4. Пользуясь рисунком 45, перечислите основные части любой космической ракеты.

Космический корабль, приборный отсек, бак с окислителем, бак с горючим, насосы, камера сгорания, сопло.

5. Опишите принцип действия ракеты.

В соответствии с законом сохранения импульса ракета летит за счет того, что из неё выталкиваются с большой скоростью газы, обладающие определенным импульсом, и ракете сообщается импульс такой же величины, но направленный в противоположную сторону. Газы выбрасываются через сопло, в котором сгорает топливо достигая при этом высокой температуры и давления. В сопло поступают топливо и окислитель, нагнетаемые туда насосами.

6. От чего зависит скорость ракеты?

Скорость ракеты зависит в первую очередь от скорости истечения газов и массы ракеты. Скорость истечения газов зависит от типа топлива и типа окислителя. Масса ракеты зависит например от того какую скорость ей хотят сообщить или от того, как далеко она должна улететь.

7. В чем заключается преимущество многоступенчатых ракет перед одноступенчатыми?

Многоступенчатые ракеты способны развивать большую скорость и лететь дальше одноступенчатых.


8. Как осуществляется посадка космического корабля?

Посадка космического корабля осуществляется таким образом, чтобы его скорость по мере приближения к поверхности снижалась. Это достигается использованием тормозной системы, в роли которой может выступать или парашютная система торможения или торможение может быть осуществлено с помощью ракетного двигателя, при этом сопло направляется вниз (к Земле, Луне и т.д.), за счет чего гасится скорость.

Упражнения.

1. С лодки, движущейся со скоростью 2 м/с, человек бросает весло массой 5 кг с горизонтальной скоростью 8 м/с противоположно движению лодки. С какой скоростью стала двигаться лодка после броска, если её масса вместе с массой человека равна 200 кг?


2. Какую скорость получит модель ракеты, если масса её оболочки равна 300 г, масса пороха в ней 100 г, а газы вырываются из сопла со скоростью 100 м/с? (Считайте истечение газа из сопла мгновенным).


3. На каком оборудовании и как проводится опыт, изображенный на рисунке 47? Какое физическое явление в данном случае демонстрируется, в чем оно заключается и какой физический закон лежит в основе этого явления?
Примечание: резиновая трубка была расположена вертикально до тех пор, пока через неё не начали пропускать воду.

На штатив с помощью держателя прикрепили воронку с присоединенной к ней снизу резиновой трубкой с искревленной насадкой на конце, а снизу разместили лоток. Затем сверху, в воронку из емкости стали лить воду, при этом вода выливалась из трубки в лоток, а сама трубка из вертикального положения сместилась. Этот опыт служит иллюстрацией реактивного движения, основанного на законе сохранения импульса.

4. Проделайте опыт, изображенный на рисунке 47. Когда резиновая трубка максимально отклонится от вертикали, перестаньте лить воду в воронку. Пока оставшаяся в трубке вода вытекает, понаблюдайте, как будет меняться: а) дальность полёта воды в струе (относительно отверстия в стеклянной трубке); б) положение резиновой трубки. Объясните оба изменения.

а) дальность полета воды в струе будет уменьшаться; б) по мере вытекания воды трубка будет приближаться к горизонтальному положению. Эти явления связаны с тем, что давление воды в трубке будет уменьшаться, а следовательно и импульс с которым выбрасывается вода.

1957-1958 годы ознаменовались крупнейшими достижениями Советского Союза в области ракетостроения.

Вымпелы, находившиеся на борту первой советской космической ракеты. Вверху - сферический вымпел, символизирующий искусственную планету; внизу - вымпел-лента (с лицевой и оборотной сторон).

Запуски советских искусственных спутников Земли позволили накопить необходимый материал для осуществления космических полетов и достижения других планет солнечной системы. Научно-исследовательские и опытно-конструкторские работы, проводимые в СССР, были направлены на создание больших по размерам и весам искусственных спутников Земли.

Вес третьего советского искусственного спутника, как известно, составлял 1327 килограммов.

При успешном запуске 4 октября 1957 г. первого в мире искусственного спутника Земли и последующих запусках тяжелых советских спутников по программе Международного геофизического года была получена первая космическая скорость - 8 километров в секунду.

В результате дальнейшей творческой работы советских ученых, конструкторов, инженеров и рабочих в настоящее время создана многоступенчатая ракета, последняя ступень которой способна достигнуть второй космической скорости - 11,2 километра в секунду, обеспечивающей возможность межпланетных полетов.

2 января 1959 года в СССР осуществлен пуск космической ракеты в сторону Луны. Многоступенчатая космическая ракета по заданной программе вышла на траекторию движения в направлении к Луне. По предварительным данным, последняя ступень ракеты получила необходимую вторую космическую скорость. Продолжая свое движение, ракета пересекла восточную границу Советского Союза, прошла над Гавайскими островами и продолжает движение над Тихим океаном, быстро удаляясь от Земли.

В 3 часа 10 минут московского времени 3 января космическая ракета, двигаясь по направлению к Луне, пройдет над южной частью острова Суматра, находясь от Земли на расстоянии около 110 тысяч километров. По предварительным расчетам, которые уточняются прямыми наблюдениями, приблизительно в 7 часов 4 января 1959 года космическая ракета достигнет района Луны.

Последняя ступень космической ракеты весом 1472 килограмма без топлива оборудована специальным контейнером, внутри которого находится измерительная аппаратура для проведения следующих научных исследований:

Обнаружения магнитного поля Луны;

Изучения интенсивности и вариаций интенсивности космических лучей вне магнитного поля Земли;

Регистрации фотонов в космическом излучении;

Обнаружения радиоактивности Луны;

Изучения распределения тяжелых ядер в космическом излучении;

Изучения газовой компоненты межпланетного вещества;

Изучения корпускулярного излучения Солнца;

Изучения метеорных частиц.

Для наблюдения за полетом последней ступени космической ракеты на ней установлены:

Радиопередатчик, излучающий на двух частотах 19,997 и 19,995 мегагерц телеграфные посылки длительностью 0,8 и 1,6 секунды;

Радиопередатчик, работающий на частоте 19,993 мегагерц телеграфными посылками переменной длительности порядка 0,5-0,9 секунды, с помощью которого передаются данные научных наблюдений;

Радиопередатчик, излучающий на частоте 183,6 мегагерц и используемый для измерения параметров движения и передачи на Землю научной информации;

Специальная аппаратура, предназначенная для создания натриевого облака - искусственной кометы.

Искусственная комета может наблюдаться и фотографироваться оптическими средствами, оборудованными светофильтрами, выделяющими спектральную линию натрия.

Искусственная комета будет образована 3 января примерно в 3 часа 57 минут московского времени и будет видима около 2-5 минут в созвездии Девы, приблизительно в центре треугольника, образованного звездами альфа Волопаса, альфа Девы и альфа Весов.

Космическая ракета несет на борту вымпел с гербом Советского Союза и надписью: «Союз Советских Социалистических Республик. Январь, 1959 год».

Общий вес научной и измерительной аппаратуры вместе с источниками питания и контейнером составляет 361,3 килограмма.

Научные измерительные станции, расположенные в различных районах Советского Союза, ведут наблюдения за первым межпланетным полетом. Определение элементов траектории осуществляется на электронных счетных машинах по данным измерений, автоматически поступающим в координационно-вычислительный центр.

Обработка результатов измерений позволит получить данные о движении космической ракеты и определить те участки межпланетного пространства, в которых производятся научные наблюдения.

Созидательный труд всего советского народа, направленный на решение важнейших проблем развития социалистического общества в интересах всего прогрессивного человечества, позволил осуществить первый успешный межпланетный полет.

Пуск советской космической ракеты еще раз показывает высокий уровень развития отечественного ракетостроения и вновь демонстрирует всему миру выдающееся достижение передовой советской науки и техники.

Величайшие тайны Вселенной сделаются более доступными человеку, который в недалеком будущем сам сможет ступить на поверхность других планет.

Коллективы научно-исследовательских институтов, конструкторских бюро заводов и испытательных организаций, создавшие новую ракету для межпланетных сообщений, посвящают этот пуск XXI съезду Коммунистической партии Советского Союза.

Передача данных о полете космической ракеты будет производиться регулярно всеми радиостанциями Советского Союза.

ПОЛЕТ КОСМИЧЕСКОЙ РАКЕТЫ

Космическая многоступенчатая ракета стартовала с поверхности Земли вертикально.

Под действием программного механизма автоматической системы, управляющей ракетой, ее траектория постепенно отклонялась от вертикали. Скорость ракеты быстро нарастала.

В конце участка разгона последняя ступень ракеты набрала скорость необходимую для своего дальнейшего движения.

Автоматическая система управления последней ступени выключила ракетный двигатель и подала команду на отделение контейнера с научной аппаратурой от последней ступени.

Контейнер и последняя ступень ракеты вышли на траекторию и начали движение по направлению к Луне, находясь на близком расстоянии друг от друга.

Чтобы преодолеть земное притяжение, космическая ракета должна набрать скорость, не меньшую, чем вторая космическая скорость. Вторая космическая скорость, называемая также параболической скоростью, у поверхности Земли составляет 11,2 километра в секунду.

Эта скорость является критической в том смысле, что при меньших скоростях называемых эллиптическими, тело либо становится спутником Земли, либо, поднявшись на некоторую предельную высоту возвращается на Землю.

При скоростях, больших второй космической скорости (гиперболических скоростях) или равных ей, тело способно преодолеть земное тяготение и навсегда удалиться от Земли.

Советская космическая ракета к моменту выключения ракетного двигателя последней ее ступени превысила вторую космическую скорость. На дальнейшее движение ракеты, до сближения ее с Луной, основное влияние оказывает сила притяжения Земли. Вследствие этого, согласно законам небесной механики, траектория движения ракеты относительно центра Земли очень близка к гиперболе, для которой центр Земли является одним из ее фокусов. Траектория наиболее искривлена вблизи Земли и распрямляется с удалением от Земли. На больших расстояниях от Земли траектория становится весьма близкой к прямой линии.

Схема трассы космической ракеты на поверхности Земли.

Цифры на схеме соответствуют последовательным положениям проекции ракеты на поверхность Земли: 1 - 3 часа 3 января, 100 тысяч километров от Земли; 2 - образование искусственной кометы; 3 - 6 часов, 137 тысяч километров; 4 - 13 часов, 209 тысяч километров; 5 -19 часов, 265 тысяч километров; 6 - 21 час, 284 тысячи километров; 7 - 5 часов 59 минут 4 января, 370 тысяч километров - момент наибольшего сближения с Луной: 8 -12 часов, 422 тысячи километров; 9 - 22 часа, 510 тысяч

В начале движения ракеты по гиперболической траектории она движется весьма быстро. Однако, по мере удаления от Земли, скорость ракеты под действием силы земного тяготения уменьшается. Так, если на высоте 1500 км скорость ракеты относительно центра Земли была несколько более 10 километров в секунду, то на высоте 100 тысяч километров она равнялась уже примерно 3,5 километра в секунду.

Траектория сближения ракеты с Луной.

Скорость поворота радиуса-вектора, соединяющего центр Земли с ракетой, убывает, согласно второму закону Кеплера, обратно пропорционально квадрату расстояния от центра Земли. Если в начале движения эта скорость составляла примерно 0,07 градуса в секунду, т. е. более чем в 15 раз превышала угловую скорость суточного вращения Земли, то примерно через час она стала меньше угловой скорости Земли. Когда же ракета приближалась к Луне, то скорость поворота ее радиуса-вектора уменьшилась более чем в 2000 раз и стала уже в пять раз меньше угловой скорости обращения Луны вокруг Земли. Скорость же обращения Луны составляет лишь 1 / 27 угловой скорости Земли.

Эти особенности движения ракеты по траектории определили характер ее перемещения относительно поверхности Земли.

На карте изображено перемещение проекции ракеты на поверхность Земли с течением времени. Пока скорость поворота радиуса-вектора ракеты была велика по сравнению со скоростью вращения Земли, эта проекция перемещалась на восток, постепенно отклоняясь на юг. Затем проекция стала перемещаться сначала на юго-запад и через 6-7 часов после старта ракеты, когда скорость поворота радиуса-вектора стала весьма мала, почти точно на запад.

Путь ракеты к Луне на карте звездного неба.

Движение ракеты среди созвездий на небесной сфере изображено на схеме. Движение ракеты на небесной сфере было очень неравномерным - быстрое в начале и очень медленное к концу.

Примерно через час полета путь ракеты на небесной сфере вошел в созвездие Волосы Вероники. Затем ракета перешла на небесном своде в созвездие Девы, в котором и произошло ее сближение с Луной.

3 января в 3 часа 57 минут московского времени, когда ракета находилась в созвездии Девы, примерно в середине треугольника, образованного звездами Арктуром, Спикой и Альфой Весов, специальным устройством, установленным на борту ракеты, была создана искусственная комета, состоящая из паров натрия, светящихся в лучах Солнца. Эту комету можно было наблюдать с Земли оптическими средствами в течение нескольких минут. Во время прохождения около Луны ракета находилась на небесной сфере между звездами Спика и Альфа Весов.

Путь ракеты на небесном своде при сближении с Луной наклонен к пути Луны примерно на 50°. Вблизи Луны ракета двигалась на небесной сфере приблизительно в 5 раз медленнее, чем Луна.

Луна, двигаясь по своей орбите вокруг Земли, подходила к точке сближения с ракетой справа, если смотреть с северной части Земли. Ракета приближалась к этой точке сверху и справа. В период наибольшего сближения ракета находилась выше и немного правее Луны.

Время полета ракеты до орбиты Луны зависит от избытка начальной скорости ракеты над второй космической скоростью и будет тем меньше, чем больше этот избыток. Выбор величины этого избытка был произведен с учетом того, чтобы прохождение ракеты вблизи Луны можно было наблюдать радиосредствами, расположенными на территории Советского Союза и в других странах Европы, а также в Африке и в большей части Азии. Время движения космической ракеты до Луны составило 34 часа.

Во время наибольшего сближения расстояние между ракетой и Луной составляло, по уточненным данным, 5-6 тысяч километров, т. е. примерно полтора поперечника Луны.

Когда космическая ракета приблизилась к Луне на расстояние в несколько десятков тысяч километров, притяжение Луны начало оказывать заметное влияние на движение ракеты. Действие тяготения Луны привело к отклонению направления движения ракеты и изменению величины скорости ее полета вблизи Луны. При сближении Луна была ниже ракеты, и поэтому, вследствие притяжения Луны, направление полета ракеты отклонилось вниз. Притяжение Луны создало также местное увеличение скорости. Это увеличение достигло максимума в районе наибольшего сближения.

После сближения с Луной космическая ракета продолжала удаляться от Земли, скорость ее относительно центра Земли убывала, приближаясь к величине, равной примерно 2 километрам в секунду.

На расстоянии от Земли порядка 1 миллиона километров и более влияние притяжения Земли на ракету настолько ослабевает, что движение ракеты можно считать происходящим лишь под действием силы тяготения Солнца. Примерно 7-8 января советская космическая ракета вышла на свою самостоятельную орбиту вокруг Солнца, стала его спутником, превратившись в первую в мире искусственную планету солнечной системы.

Скорость ракеты относительно центра Земли в период 7-8 января была направлена примерно в ту же сторону, что и скорость Земли в ее движении вокруг Солнца. Так как скорость Земли равняется 30 километрам в секунду, а скорость ракеты относительно Земли - 2 километра в секунду, то скорость движения ракеты, как планеты, вокруг Солнца была равна приблизительно 32 километрам в секунду.

Точные данные о положении ракеты, направлении и величине ее скорости на больших расстояниях от Земли позволяют по законам небесной механики рассчитать движение космической ракеты как планеты солнечной системы. Расчет орбиты произведен без учета возмущений, которые могут вызвать планеты и другие тела солнечной системы. Вычисленная орбита характеризуется следующими данными:

наклонение орбиты к плоскости орбиты Земли составляет около 1°, т. е. весьма мало;

эксцентриситет орбиты искусственной планеты равен 0,148, что заметно больше, чем эксцентриситет земной орбиты, равный 0,017;

минимальное расстояние от Солнца составит около 146 миллионов километров, т. е. будет лишь на несколько миллионов километров меньше расстояния Земли от Солнца (среднее расстояние Земли от Солнца составляет 150 миллионов километров);

максимальное расстояние искусственной планеты от Солнца составит около 197 миллионов километров, т. е. космическая ракета при этом будет находиться от Солнца на 47 миллионов километров дальше, чем Земля;

период обращения искусственной планеты вокруг Солнца будет 450 суток, т. е. около 15 месяцев. Минимальное расстояние от Солнца будет достигнуто впервые в середине января 1959 г., а максимальное - в начале сентября 1959 года.

Расчетная орбита искусственной планеты относительно Солнца.

Интересно отметить, что орбита советской искусственной планеты подходит к орбите Марса на расстояние порядка 15 миллионов километров, т. е. примерно в 4 раза ближе, чем орбита Земли.

Расстояние между ракетой и Землей при их движении вокруг Солнца будет изменяться, то увеличиваясь, то уменьшаясь. Наибольшее расстояние между ними может достигать величин 300-350 миллионов километров.

В процессе обращения искусственной планеты и Земли вокруг Солнца они могут сблизиться на расстояние порядка миллиона километров.

ПОСЛЕДНЯЯ СТУПЕНЬ КОСМИЧЕСКОЙ РАКЕТЫ И КОНТЕЙНЕР С НАУЧНОЙ АППАРАТУРОЙ

Последняя ступень космической ракеты является управляемой ракетой, крепящейся посредством переходника к предшествующей ступени.

Управление ракетой осуществляется автоматической системой, стабилизирующей положение ракеты на заданной траектории и обеспечивающей расчетную скорость в конце работы двигателя. Последняя ступень космической ракеты после израсходования рабочего запаса топлива весит 1472 килограмма.

Кроме устройств, обеспечивающих нормальный полет последней ступени ракеты, в корпусе ее расположены:

герметичный, отделяемый контейнер с научной и радиотехнической аппаратурой;

два передатчика с антеннами, работающие на частотах 19,997 мгц и 19,995 мгц;

счетчик космических лучей;

радиосистема, с помощью которой определяется траектория полета космической ракеты и прогнозируется ее дальнейшее движение;

аппаратура для образования искусственной натриевой кометы.

Пятиугольные элементы сферического вымпела.

Контейнер расположен в верхней части последней ступени космической ракеты и защищен от нагрева при прохождении ракетой плотных слоев атмосферы сбрасываемым конусом.

Контейнер состоит из двух сферических тонких полуоболочек, герметично соединенных между собой шпангоутами с уплотнительной прокладкой из специальной резины. На одной из полуоболочек контейнера расположены 4 стержня антенн радиопередатчика, работающего на частота 183,6 мгц . Эти антенны закреплены на корпусе симметрично относительно полого алюминиевого штыря, на конце которого расположен датчик для измерения магнитного поля Земли и обнаружения магнитного поля Луны. До момента сброса защитного конуса антенны сложены и закреплены на штыре магнитометра. После сброса защитного конуса антенны раскрываются. На этой же полуоболочке расположены две протонные ловушки для обнаружения газовой компоненты межпланетного вещества и два пьезоэлектрических датчика для изучения метеорных частиц.

Полуоболочки контейнера выполнены из специального алюминиево-магниевого сплава. На шпангоуте нижней полуоболочки крепится приборная рама трубчатой конструкции из магниевого сплава, на которой расположены приборы контейнера.

Внутри контейнера размещена следующая аппаратура:

1. Аппаратура для радиоконтроля траектории движения ракеты, состоящая из передатчика, работающего на частоте 183,6 мгц, и блока приемников.

2. Радиопередатчик, работающий на частоте 19,993 мгц.

3. Телеметрический блок, предназначенный для передачи по радиосистемам на Землю данных научных измерений, а также данных о температуре и давлении в контейнере.

4. Аппаратура для изучения газовой компоненты межпланетного вещества и корпускулярного излучения Солнца.

5. Аппаратура для измерения магнитного поля Земли и обнаружения магнитного поля Луны.

6. Аппаратура для изучения метеорных частиц.

7. Аппаратура для регистрации тяжелых ядер в первичном космическом излучении.

8. Аппаратура для регистрации интенсивности и вариаций интенсивности космических лучей и для регистрации фотонов в космическом излучении.

Радиоаппаратура и научная аппаратура контейнера получают электропитание от серебряно-цинковых аккумуляторов и окисно-ртутных батарей, размещенных на приборной раме контейнера.

Контейнер с научной и измерительной аппаратурой (на монтажной тележке).

Контейнер наполнен газом при давлении 1,3 атм. Конструкция контейнера обеспечивает высокую герметичность внутреннего объема. Температура газа внутри контейнера поддерживается в заданных пределах (около 20°С). Указанный температурный режим обеспечивается приданием оболочке контейнера определенных коэффициентов отражения и излучения за счет специальной обработки оболочки. Кроме того, в контейнере установлен вентилятор, обеспечивающий принудительную циркуляцию газа. Циркулирующий в контейнере газ отбирает тепло от приборов и отдает его оболочке, являющейся своеобразным радиатором.

Отделение контейнера от последней ступени космической ракеты происходит после окончания работы двигательной установки последней ступени.

Отделение контейнера необходимо с точки зрения обеспечения теплового режима контейнера. Дело в том, что в контейнере расположены приборы, выделяющие большое количество тепла. Тепловой режим, как указано выше, обеспечивается сохранением определенного баланса между теплом, излучаемым оболочкой контейнера, и теплом, получаемым оболочкой от Солнца.

Отделение контейнера обеспечивает нормальный режим работы антенн контейнера и аппаратуры для измерения магнитного поля Земли и обнаружения магнитного поля Луны; в результате отделения контейнера устраняются магнитные влияния металлической конструкции ракеты на показания магнитометра.

Общий вес научной и измерительной аппаратуры с контейнером, вместе с источниками питания, размещенными на последней ступени космической ракеты, составляет 361,3 килограмма.

В ознаменование создания в Советском Союзе первой космической ракеты, ставшей искусственной планетой солнечной системы, на ракете установлены два вымпела с Государственным гербом Советского Союза. Эти вымпелы расположены в контейнере.

Один вымпел выполнен в виде тонкой металлической ленты. На одной стороне ленты имеется надпись: «Союз Советских Социалистических Республик», а на другой изображены гербы Советского Союза и надпись: «Январь 1959 Январь». Надписи нанесены специальным, фотохимическим способом, обеспечивающим длительное их сохранение.

Приборная рама контейнера с аппаратурой и источниками питания (на монтажной тележке).

Второй вымпел имеет сферическую форму, символизирующую искусственную планету. Поверхность сферы покрыта пятиугольными элементами из специальной нержавеющей стали. На одной стороне каждого элемента вычеканена надпись: «СССР Январь 1959 г.», на другой - герб Советского Союза и надпись «СССР».

КОМПЛЕКС ИЗМЕРИТЕЛЬНЫХ СРЕДСТВ

Для наблюдения за полетом космической ракеты, измерения параметров ее орбиты и приема с борта данных научных измерений был использован большой комплекс измерительных средств, расположенных по всей территории Советского Союза.

В состав измерительного комплекса входили: группа автоматизированных радиолокационных средств, предназначенных для точного определения элементов начального участка орбиты; группа радиотелеметрических станций для регистрации научной информации, передаваемой с борта космической ракеты; радиотехническая система контроля элементов траектории ракеты на больших удалениях от Земли; радиотехнические станции, используемые для приема сигналов на частотах 19,997, 19,995 и 19,993 мгц; оптические средства для наблюдения и фотографирования искусственной кометы.

Согласование работы всех измерительных средств и привязка результатов измерений к астрономическому времени производились с помощью специальной аппаратуры единого времени и систем радиосвязи.

Обработка данных траекторных измерений, поступающих из районов расположения станций, определение элементов орбиты и выдача целеуказаний измерительным средствам выполнялись координационно-вычислительным центром на электронных счетных машинах.

Автоматизированные радиолокационные станции использовались для оперативного определения начальных условий движения космической ракеты, выдачи долгосрочного прогноза о движении ракеты и данных целеуказаний всем измерительным и наблюдательным средствам. Данные измерений этих станций с помощью специальных счетно-решающих устройств преобразовывались в двоичный код, осреднялись, привязывались к астрономическому времени с точностью до нескольких миллисекунд и автоматически выдавались в линии связи.

Чтобы предохранить данные измерений от возможных ошибок при передаче по линиям связи, измерительная информация кодировалась. Применение кода позволяло находить и исправлять одну ошибку в передаваемом числе и находить и отбрасывать числа с двумя ошибками.

Преобразованная таким образом измерительная информация поступала в координационно-вычислительный центр. Здесь данные измерений с помощью входных устройств автоматически набивались на перфокарты, по которым электронные счетные машины производили совместную обработку результатов измерений и расчет орбиты. На основе использования большого числа траекторных измерений в результате решения краевой задачи с применением метода наименьших квадратов определялись начальные условия движения космической ракеты. Далее интегрировалась система дифференциальных уравнений, описывающая совместное движение ракеты, Луны, Земли и Солнца.

Телеметрические наземные станции производили прием научной информации с борта космической ракеты и ее регистрацию на фотопленках и магнитных лентах. Для обеспечения большой дальности приема радиосигналов были применены высокочувствительные приемники и специальные антенны с большой эффективной площадью.

Приемные радиотехнические станции, работающие на частотах 19,997, 19,995, 19,993 мгц, осуществляли прием радиосигналов с космической ракеты и регистрацию этих сигналов на магнитных пленках. При этом производились измерения напряженности поля и ряд других измерений, позволяющих проводить ионосферные исследования.

Изменением вида манипуляции передатчика, работающего на двух частотах 19,997 и 19,995 мгц, передавались данные о космических лучах. По каналу передатчика, излучающего на частоте 19,993 мгц, путем изменения длительности интервала между телеграфными посылками передавалась основная научная информация.

Для оптического наблюдения космической ракеты с Земли с целью подтверждения факта прохождения космической ракеты по данному участку ее траектории была использована искусственная натриевая комета. Искусственная комета была образована 3 января в 3 часа 57 минут по московскому времени на расстоянии 113 тысяч километров от Земли. Наблюдение искусственной кометы было возможно из районов Средней Азии, Кавказа, Ближнего Востока, Африки и Индии. Фотографирование искусственной кометы производилось с помощью специально созданной оптической аппаратуры, установленной на южных астрономических обсерваториях Советского Союза. Для повышения контрастности фотографических отпечатков использовались светофильтры, выделяющие спектральную линию натрия. С целью повышения чувствительности фотографической аппаратуры ряд установок был оборудован электронно-оптическими преобразователями.

Несмотря на неблагоприятную погоду в большинстве районов расположения оптических средств, ведущих наблюдение за космической ракетой, удалось получить несколько фотографий натриевой кометы.

Контроль орбиты космической ракеты вплоть до расстояний 400-500 тысяч километров и измерение элементов ее траектории производились с помощью специальной радиотехнической системы, работающей на частоте 183,6 мгц.

Данные измерений в строго определенные моменты времени автоматически выводились и фиксировались в цифровом коде на специальных устройствах.

Вместе со временем, в которое производился съем показаний радиотехнической системы, эти данные оперативно поступали в координационно-вычислительный центр. Совместная обработка указанных измерений вместе с данными измерений радиолокационной системы позволяла уточнять элементы орбиты ракеты и непосредственно контролировать движение ракеты в пространстве.

Использование мощных наземных передатчиков и высокочувствительных приемных устройств обеспечивало уверенное измерение траектории космической ракеты до расстояний порядка 500 тысяч километров.

Применение указанного комплекса измерительных средств позволило получить ценные данные научных наблюдений и надежно контролировать и прогнозировать движение ракеты в космическом пространстве.

Богатый материал траекторных измерений, выполненных при полете первой советской космической ракеты, и опыт автоматической обработки траекторных измерений на электронных счетных машинах будут иметь большое значение при запусках последующих космических ракет.

НАУЧНЫЕ ИССЛЕДОВАНИЯ

Изучение космических лучей

Одной из главных задач научных исследований, проводимых на советской космической ракете, является изучение космических лучей.

Состав и свойства космического излучения на больших расстояниях от Земли определяются условиями возникновения космических лучей и структурой космического пространства. До настоящего времени сведения о космических лучах были получены путем измерения космических лучей вблизи Земли. Между тем, в результате действия целого ряда процессов состав и свойства космического излучения у Земли резко отличаются от того, что присуще самим «истинным» космическим лучам. Наблюдаемые на поверхности Земли космические лучи мало похожи на те частицы, которые приходят к нам из космоса.

При использовании высотных ракет и в особенности спутников Земли на пути космических лучей из космоса к измерительному прибору уже нет существенного количества вещества. Однако Земля окружена магнитным полем, которое частично отражает космические лучи. С другой стороны, это же магнитное поле создает своеобразную ловушку для космических лучей. Один раз, попав в эту ловушку, частица космических лучей блуждает там в течение очень долгого времени. В результате этого вблизи Земли накапливается большое число частиц космического излучения.

До тех пор, пока измеряющий космическое излучение прибор находится в сфере действия магнитного поля Земли, результаты измерений не дадут возможности изучать космические лучи, приходящие из Вселенной. Известно, что среди частиц, присутствующих на высотах порядка 1000 километров, лишь ничтожная часть (около 0,1 процента) приходит непосредственно из космоса. Остальные 99,9 процента частиц возникают, по-видимому, от распада нейтронов, испускаемых Землей (точнее, верхними слоями ее атмосферы). Эти нейтроны в свою очередь создаются космическими лучами, бомбардирующими Землю.

Лишь после того, как прибор будет находиться не только вне атмосферы Земли, но и вне магнитного поля Земли, можно выяснить природу и происхождение космических лучей.

На советской космической ракете установлены разнообразные приборы, позволяющие всесторонне изучать состав космических лучей в межпланетном пространстве.

С помощью двух счетчиков заряженных частиц определялась интенсивность космического излучения. С помощью двух фотоумножителей с кристаллами исследовался состав космических лучей.

Для этой цели измерялись:

1. Поток энергии космического излучения в широком диапазоне энергий.

2. Число фотонов с энергией выше 50 000 электрон-вольт (жесткие рентгеновские лучи).

3. Число фотонов с энергией выше 500 000 электрон-вольт (гамма-лучи).

4. Число частиц, обладающих способностью проходить сквозь кристалл йодистого натрия (энергия таких частиц больше 5000 000 электрон-вольт).

5. Суммарная ионизация, вызываемая в кристалле всеми видами излучения.

Счетчики заряженных частиц давали импульсы на специальные так называемые пересчетные схемы. С помощью таких схем оказывается возможным передать по радио сигнал - тогда, когда сосчитано определенное число частиц.

Фотоумножители, соединенные с кристаллами, регистрировали вспышки света, возникающие в кристалле при прохождении сквозь них частиц космического излучения. Величина импульса на выходе фотоумножителя в известных пределах пропорциональна количеству света, излученному в момент прохождения частицы космических лучей внутри кристалла. Эта последняя величина в свою очередь пропорциональна той энергии, которая была истрачена в кристалле на ионизацию частицей космических лучей. Выделяя те импульсы, величина которых больше определенного значения, можно исследовать состав космического излучения. Наиболее чувствительная система регистрирует все случаи, когда энергия, выделенная в кристалле, превосходит 50 000 электрон-вольт. Однако проникающая способность частиц при таких энергиях очень мала. В этих условиях в основном будут регистрироваться рентгеновские лучи.

Счет числа импульсов осуществляется с помощью таких же пересчетных схем, которые были использованы для счета числа заряженных частиц.

Аналогичным образом выделяются импульсы, величина которых соответствует энерговыделению в кристалле более 500 000 электрон-вольт. В этих условиях в основном регистрируются гамма-лучи.

Путем выделения импульсов еще большей величины (соответствующих энерговыделению более 5 000 000 электрон-вольт) отмечаются случаи прохождения сквозь кристалл частиц космических лучей, обладающих большой энергией. Следует отметить, что заряженные частицы, входящие в состав космических лучей и летящие практически со скоростью света, будут проходить сквозь кристалл. При этом энерговыделение в кристалле в большинстве случаев будет равно примерно 20 000 000 электрон-вольт.

Помимо измерения числа импульсов, производится определение суммарной ионизации, создаваемой в кристалле всеми видами излучений. Для этой цели служит схема, состоящая из неоновой лампочки, конденсатора и сопротивлений. Эта система позволяет путем измерения числа зажиганий неоновой лампочки определять суммарный ток, текущий через фотоумножитель, и тем самым измерять суммарную ионизацию, создаваемую в кристалле.

Исследования, проведенные на космической ракете, дают возможность определить состав космических лучей в межпланетном пространстве.

Изучение газовой составляющей межпланетного вещества и корпускулярного излучения Солнца

До недавнего времени предполагалось, что концентрация газа в межпланетном пространстве весьма мала и измеряется единицами частиц в кубическом сантиметре. Однако некоторые астрофизические наблюдения последних лет поколебали эту точку зрения.

Давление солнечных лучей на частицы самых верхних слоев земной атмосферы создает своеобразный «газовый хвост» Земли, который направлен всегда от Солнца. Свечение его, которое проектируется на звездный фон ночного неба в виде противосияния, называется зодиакальным светом. В 1953 году были опубликованы результаты наблюдений поляризации зодиакального света, которые привели некоторых ученых к выводу о том, что в межпланетном пространстве в районе Земли содержится около 600-1000 свободных электронов в кубическом сантиметре. Если это так, и так как среда в целом электрически нейтральна, то в ней должны содержаться и положительно заряженные частицы с такой же концентрацией. При некоторых предположениях из указанных поляризационных измерений была выведена зависимость электронной концентрации в межпланетной среде от расстояния до Солнца, а следовательно, и плотность газа, который должен быть полностью или почти полностью ионизирован. Плотность межпланетного газа должна убывать по мере увеличения расстояния от Солнца.

Другим опытным фактом, говорящим в пользу существования межпланетного газа с плотностью порядка 1000 частиц в кубическом сантиметре, является распространение так называемых «свистящих атмосфериков» - низкочастотных электромагнитных колебаний, вызываемых атмосферными электрическими разрядами. Для объяснения распространения этих электромагнитных колебаний от места их возникновения к месту, где они наблюдаются, приходится предполагать, что они распространяются по силовым линиям магнитного поля Земли, на расстояниях восьми-десяти земных радиусов (т. е. порядка 50-65 тысяч километров) от поверхности Земли, в среде с электронной концентрацией порядка тысячи электронов в 1 кубическом сантиметре.

Однако выводы о существовании в межпланетном пространстве столь плотной газовой среды отнюдь не являются бесспорными. Так, ряд ученых указывает на то, что наблюдаемая поляризация зодиакального света может вызываться не свободными электронами, а межпланетной пылью. Высказываются предположения о том, что в межпланетном пространстве газ присутствует только в виде так называемых корпускулярных потоков, т. е. потоков ионизированного газа, выбрасываемых с поверхности Солнца и движущихся со скоростью 1000-3000 километров в секунду.

По-видимому, при современном состоянии астрофизики вопрос о природе и концентрации межпланетного газа нельзя решить с помощью наблюдений, проводимых с поверхности Земли. Эта проблема, имеющая большое значение для выяснения процессов обмена газом между межпланетной средой и верхними слоями земной атмосферы и для изучения условий распространения корпускулярного излучения Солнца, может быть решена с помощью приборов, устанавливаемых на ракетах, движущихся непосредственно в межпланетном пространстве.

Целью установки приборов для изучения газовой составляющей межпланетного вещества и корпускулярного излучения Солнца на советской космической ракете является проведение первого этапа подобных исследований - попытки прямого обнаружения стационарного газа и корпускулярных потоков в области межпланетного пространства, находящейся между Землей и Луной, и грубой оценки концентрации заряженных частиц в этой области. При подготовке эксперимента на основании имеющихся в настоящее время данных принимались в качестве наиболее вероятных две следующие модели межпланетной газовой среды:

А. Имеется стационарная газовая среда, состоящая в основном из ионизированного водорода (т. е. из электронов и протонов - ядер водорода) с электронной температурой 5000-10 000°К (близкой к ионной температуре). Через эту среду временами проходят корпускулярные потоки со скоростью 1000-3000 километров в секунду с концентрацией частиц 1-10 в кубическом сантиметре.

Б. Имеются только спорадические корпускулярные потоки, состоящие из электронов и протонов со скоростями 1000-3000 километров в секунду, иногда достигающие максимальной концентрации 1000 частиц в кубическом сантиметре.

Эксперимент проводится с помощью протонных ловушек. Каждая протонная ловушка представляет собой систему из трех концентрически расположенных полусферических электродов с радиусами 60 мм , 22,5 мм и 20 мм . Два внешних электрода изготовлены из тонкой металлической сетки, третий - сплошной, служит коллектором протонов.

Электрические потенциалы электродов относительно корпуса контейнера таковы, что электрические поля, образуемые между электродами ловушки, должны обеспечить как полное собирание всех протонов и выталкивание электронов, попадающих в ловушку из стационарного газа, так и подавление фототока с коллектора, возникающего под действием ультрафиолетового излучения Солнца и других излучений, действующих на коллектор.

Разделение протонного тока, создаваемого в ловушках стационарным ионизированным газом и корпускулярными потоками (если они существуют совместно), осуществляется одновременным использованием четырех протонных ловушек, отличающихся друг от друга тем, что у двух из них на оболочки (внешние сетки) подан положительный потенциал, равный 15 вольтам относительно оболочки контейнера.

Этот тормозящий потенциал препятствует попаданию в ловушку протонов из стационарного газа (имеющих энергию порядка 1 электрон-вольта), но не может помешать попаданию на коллектор протонов корпускулярных потоков, обладающих гораздо большими энергиями. Две остальные ловушки должны регистрировать суммарные протонные токи, создаваемые как стационарными, так и корпускулярными протонами. Внешняя сетка у одной из них находится под потенциалом оболочки контейнера, а у другой имеется отрицательный потенциал, равный 10 вольтам относительно той же оболочки.

Токи в цепях коллекторов после усиления регистрируются с помощью радиотелеметрической системы.

Исследование метеорных частиц

Наряду с планетами и их спутниками, астероидами и кометами в солнечной системе присутствует большое количество мелких твердых частиц, движущихся относительно Земли со скоростями от 12 до 72 километров в секунду и называемых в комплексе метеорным веществом.

К настоящему времени основные сведения о метеорном веществе, вторгающемся в земную атмосферу из межпланетного пространства, получены астрономическими, а также радиолокационными методами.

Сравнительно крупные метеорные тела, влетая с огромными скоростями в атмосферу Земли, сгорают в ней, вызывая свечение, наблюдаемое визуально и при помощи телескопов. Более мелкие частицы прослеживаются радиолокаторами по следу заряженных частиц - электронов и ионов, образующихся при движении метеорного тела.

На основании этих исследований получены данные о плотности метеорных тел вблизи Земли, их скорости и массе от 10~4 грамма и больше.

Данные о мелких и самых многочисленных частицах с поперечником в несколько микрон получаются из наблюдения рассеяния солнечного света лишь на огромном скоплении таких частиц. Исследование индивидуальной микрометеорной частицы возможно только при помощи аппаратуры, установленной на искусственных спутниках Земли, а также на высотных и космических ракетах.

Изучение метеорного вещества имеет существенное научное значение для геофизики, астрономии, для решения проблем эволюции и происхождения планетных систем.

В связи с развитием ракетной техники и началом эры межпланетных полетов, открытой первой советской космической ракетой, изучение метеорного вещества приобретает большой чисто практический интерес для определения метеорной опасности для космических ракет и искусственных спутников Земли, находящихся длительное время в полете.

Метеорные тела при соударении с ракетой способны производить на нее разного рода воздействия: разрушить ее, нарушить герметичность кабины, пробив оболочку. Микрометеорные частицы, длительное время воздействуя на оболочку ракеты, могут вызвать изменение характера ее поверхности. Поверхности оптических приборов в результате столкновения с микрометеорными телами могут превращаться из прозрачных в матовые.

Как известно, вероятность столкновения космической ракеты с метеорными частицами, способными повредить ее, мала, но она существует, и важно правильно оценить ее.

Для исследования метеорного вещества в межпланетном пространстве на приборном контейнере космической ракеты - установлены два баллистических пьезоэлектрических датчика из фосфата аммония, регистрирующие удары микрометеорных частиц. Пьезоэлектрические датчики превращают механическую энергию ударяющей частицы в электрическую, величина которой зависит от массы и скорости ударяющей частицы, а число импульсов равно числу частиц, сталкивающихся с поверхностью датчика.

Электрические импульсы сдатчика, имеющие вид кратковременных затухающих колебаний, подаются на вход усилителя-преобразователя, разделяющего их на три диапазона по амплитуде и подсчитывающего число импульсов в каждом амплитудном диапазоне.

Магнитные измерения

Успехи советской ракетной техники открывают перед геофизиками большие возможности. Космические ракеты позволят производить непосредственные измерения магнитных полей планет специальными магнитометрами или обнаруживать поля планет благодаря их возможному влиянию на интенсивность космического излучения непосредственно в пространстве, окружающем планеты.

Полет советской космической ракеты с магнитометром в сторону Луны является первым таким экспериментом.

Помимо исследования магнитных полей космических тел, громадное значение имеет вопрос об интенсивности магнитного поля в космическом пространстве вообще. Напряженность магнитного поля Земли на расстоянии 60 земных радиусов (на расстоянии лунной орбиты) практически равна нулю. Есть основания полагать, что магнитный момент Луны невелик. Магнитное поле Луны, в случае однородного намагничивания, должно убывать по закону куба расстояния от ее центра. При неоднородном намагничивании интенсивность поля Луны будет убывать еще быстрее. Следовательно, оно может быть надежно обнаружено лишь в непосредственной близости от Луны.

Какова интенсивность поля в пространстве внутри орбиты Луны при достаточном удалении от Земли и Луны? Определяется ли оно значениями, вычисленными из магнитного потенциала Земли, или оно зависит и от других причин? Магнитное поле Земли измерено на третьем советском спутнике в диапазоне высот 230-1800 км, т. е. до 1/3 радиуса Земли.

Относительный вклад возможной непотенциальной части постоянного магнитного поля, влияние переменной части магнитного поля, будет больше на расстоянии нескольких радиусов Земли, где интенсивность ее поля уже достаточно мала. На расстоянии пяти радиусов поле Земли должно составлять примерно 400 гамм (одна гамма - 10 -5 эрстед).

Установка магнитометра на борту ракеты, летящей в сторону Луны, преследует следующие цели:

1. Измерить магнитное поле Земли и возможные поля токовых систем в пространстве внутри орбиты Луны.

2. Обнаружить магнитное поле Луны.

Вопрос о том, намагничены ли, подобно Земле, планеты солнечной системы и их спутники, является важным вопросом астрономии и геофизики.

Статистическая обработка большого числа наблюдений, выполненная магнитологами с целью обнаружения магнитных полей планет и Луны по их возможному влиянию на геометрию корпускулярных потоков, выбрасываемых Солнцем, не привела к определенным результатам.

Попытка установления общей связи между механическими моментами космических тел, известных для большинства планет солнечной системы, и их возможными магнитными моментами не нашла экспериментального подтверждения в целом ряде наземных экспериментов, которые следовали из этой гипотезы.

В настоящее время наиболее часто используется в различных гипотезах происхождения магнитного поля Земли модель регулярных токов, текущих в жидком проводящем ядре Земли и вызывающих основное магнитное поле Земли. Вращение Земли вокруг оси при этом привлекается для объяснения частных особенностей земного поля.

Таким образом, согласно этой гипотезе, существование жидкого проводящего ядра является обязательным условием наличия общего магнитного поля.

О физическом состоянии внутренних слоев Луны мы знаем очень мало. До недавнего времени полагали, исходя из вида поверхности Луны, что, если даже горы и лунные кратеры имеют вулканическое происхождение, вулканическая деятельность на Луне давно окончилась и Луна вряд ли имеет жидкое ядро.

При такой точке зрения следовало бы полагать, что Луна не обладает магнитным полем, если верна гипотеза происхождения земного магнитного поля. Однако, если вулканическая деятельность на Луне продолжается, то не исключается возможность существования неоднородной намагниченности Луны и даже общей однородной намагниченности.

Чувствительность, диапазон измерения магнитометра и программа его работы для советской космической ракеты были выбраны, исходя из необходимости решения указанных выше задач. Так как ориентация измерительных датчиков относительно измеряемого магнитного поля непрерывно меняется из-за вращения контейнера и вращения Земли, для эксперимента используется трехкомпонентный магнитометр полного вектора с магнито-насыщенными датчиками.

Три взаимно перпендикулярных чувствительных датчика магнитометра закреплены неподвижно относительно корпуса контейнера на специальной немагнитной штанге длиной более метра. При этом влияние магнитных частей аппаратуры контейнера все же составляет 50-100 гамм, в зависимости от ориентации датчика. Достаточно точные результаты при измерении магнитного поля Земли могут быть получены до расстояний 4-5 ее радиусов.

Научная аппаратура, установленная на борту ракеты, функционировала нормально. Получено большое количество записей результатов измерений, которые обрабатываются. Предварительный анализ показывает, что результаты исследований имеют большое научное значение. Эти результаты будут публиковаться по мере обработки наблюдений.

мы разбирали важнейший компонент полета в глубокий космос – гравитационный маневр. Но в силу своей сложности такой проект, как космический полет, всегда можно разложить на большой ряд технологий и изобретений, которые делают его возможным. Таблица Менделеева, линейная алгебра, расчеты Циолковского, сопромат и еще целые области науки внесли свою лепту в первый, да и все последующие полеты человека в космос. В сегодняшней статье мы расскажем, как и кому пришла в голову идея космической ракеты, из чего она состоит и как из чертежей и расчетов ракеты превратились в средство доставки людей и грузов в космос.

Краткая история ракет

Общий принцип реактивного полета, который лег в основу всех ракет, прост - от тела отделяется какая-то часть, приводящая все остальное в движение.

Кто первым реализовал этот принцип – неизвестно, но различные догадки и домыслы доводят генеалогию ракетостроения аж до Архимеда. Доподлинно о первых подобных изобретениях известно, что ими активно пользовались китайцы, которые заряжали их порохом и за счет взрыва запускали в небо. Таким образом они создали первые твердотопливные ракеты. Большой интерес к ракетам появился у европейских правительств в начале

Второй ракетный бум

Ракеты ждали своего часа и дождались: в 1920-х годах начался второй ракетный бум, и связан он в первую очередь с двумя именами.

Константин Эдуардович Циолковский - ученый-самоучка из Рязанской губернии, невзирая на трудности и препятствия, сам дошел до многих открытий, без которых невозможно было бы даже говорить о космосе. Идея использования жидкого топлива, формула Циолковского, которая рассчитывает необходимую для полета скорость, исходя из соотношения конечной и начальной масс, многоступенчатая ракета - все это его заслуга. Во многом под влиянием его трудов создавалось и оформлялось отечественное ракетостроение. В Советском Союзе начали стихийно возникать общества и кружки по изучению реактивного движения, в числе которых ГИРД - группа изучения реактивного движения, а в 1933 году под патронажем властей появился Реактивный институт.

Константин Эдуардович Циолковский.
Источник: Wikimedia.org

Второй герой ракетной гонки - немецкий физик Вернер фон Браун. Браун имел отличное образование и живой ум, а после знакомства с другим светилом мирового ракетостроения, Генрихом Обертом, он решил приложить все свои силы к созданию и усовершенствованию ракет. В годы Второй Мировой фон Браун фактически стал отцом «оружия возмездия» Рейха - ракеты «Фау-2», которую немцы начали применять на поле боя в 1944 году. «Крылатый ужас», как называли её в прессе, принес разрушение многим английским городам, но, к счастью, на тот момент крах нацизма был уже делом времени. Вернер фон Браун вместе со своим братом решил сдаться в плен к американцам, и, как показала история, это был счастливый билет не только и не столько для ученых, сколько для самих американцев. С 1955 года Браун работает на американское правительство, и его изобретения ложатся в основу космической программы США.

Но вернемся в 1930-е. Советское правительство по достоинству оценило рвение энтузиастов на пути к космосу и решило употребить его в своих интересах. В годы войны себя отлично показала «Катюша» - система залпового огня, которая стреляла реактивными ракетами. Это было во многом инновационное оружие: «Катюша» на базе легкого грузовика «Студебеккер» приезжала, разворачивалась, обстреливала сектор и уезжала, не давая немцам опомниться.

Окончание войны подкинуло нашему руководству новую задачу: американцы продемонстрировали миру всю мощь ядерной бомбы, и стало совершенно очевидно, что на статус сверхдержавы может претендовать только тот, у кого есть нечто похожее. Но здесь была проблема. Дело в том, что, помимо самой бомбы, нам нужны были средства доставки, которые бы смогли обойти ПВО США. Самолеты для этого не годились. И СССР решил сделать ставку на ракеты.

Константин Эдуардович Циолковский умер в 1935 году, но ему на смену пришло целое поколение молодых ученых, которое и отправило человека в космос. Среди этих ученых был Сергей Павлович Королев, которому суждено было стать «козырем» Советов в космической гонке.

СССР принялся за создание своей межконтинентальной ракеты со всем усердием: были организованы институты, собраны лучшие ученые, в подмосковных Подлипках создается НИИ по ракетному вооружению, и работа кипит вовсю.

Только колоссальное напряжение сил, средств и умов позволило Советскому Союзу в кратчайшие сроки построить свою ракету, которую назвали Р-7. Именно её модификации вывели в космос «Спутник» и Юрия Гагарина, именно Сергей Королев и его соратники дали старт космической эре человечества. Но из чего состоит космическая ракета?

Эта статья представит читателю такую интереснейшую тему, как космическая ракета, ракета-носитель и весь тот полезный опыт, который это изобретение принесло человечеству. Также будет рассказано и о полезных грузах, доставляемых в космическое пространство. Освоение космоса началось не так давно. В СССР это была середина третьей пятилетки, когда окончилась Вторая мировая война. Космическая ракета разрабатывалась во многих странах, однако даже США обогнать нас на том этапе не удалось.

Первые

Первой в удачном запуске ушла из СССР космическая ракета-носитель с искусственным спутником на борту 4 октября 1957 года. Спутник ПС-1 удалось вывести на околоземную орбиту. Нужно отметить, что для этого понадобилось создать шесть поколений, и только седьмого поколения космические ракеты России смогли развить нужную для выхода в околоземное пространство скорость - восемь километров в секунду. Иначе невозможно преодолеть притяжение Земли.

Это стало возможным в процессе разработок баллистического оружия дальнего радиуса, где применялось форсирование двигателя. Не следует путать: космическая ракета и космический корабль - это разные вещи. Ракета - средство доставки, а корабль крепится на неё. Вместо него там может быть что угодно - космическая ракета может нести на себе и спутник, и оборудование, и ядерную боеголовку, что всегда служило и до сих пор служит сдерживанием для ядерных держав и стимулом к сохранению мира.

История

Первыми теоретически обосновали запуск космической ракеты русские учёные Мещерский и Циолковский, которые уже в 1897 году описали теорию её полёта. Значительно позже эту идею подхватили Оберт и фон Браун из Германии и Годдард из США. Именно в этих трёх странах началась работа над задачами реактивного движения, создания твёрдотопливных и жидкостных реактивных двигателей. Лучше всех эти вопросы решались в России, по крайней мере твёрдотопливные двигатели уже широко использовались во Второй мировой войне ("Катюши"). Жидкостные реактивные двигатели лучше получились в Германии, создавшей первую баллистическую ракету - "Фау-2".

После войны команда Вернера фон Брауна, прихватив чертежи и разработки, нашла приют в США, а СССР вынужден был довольствоваться небольшим количеством отдельных узлов ракеты без какой бы то ни было сопроводительной документации. Остальное придумали сами. Ракетная техника развивалась стремительно, всё более увеличивая дальность и массу несомого груза. В 1954 году началась работа над проектом, благодаря которому СССР смог первым осуществить полет космической ракеты. Это была межконтинентальная двухступенчатая баллистическая ракета Р-7, которую вскоре модернизировали для космоса. Она получилась на славу - исключительно надёжная, обеспечившая множество рекордов в освоении космического пространства. В модернизированном виде её используют до сих пор.

"Спутник" и "Луна"

В 1957 году первая космическая ракета - та самая Р-7 - вывела на орбиту искусственный "Спутник-1". США чуть позже решили повторить такой запуск. Однако в первую попытку их космическая ракета в космосе не побывала, она взорвалась на старте - даже в прямом эфире. "Авангард" был сконструирован чисто американской командой, и он не оправдал надежд. Тогда проектом занялся Вернер фон Браун, и в феврале 1958 года старт космической ракеты удался. А в СССР тем временем модернизировали Р-7 - к ней была добавлена третья ступень. В результате скорость космической ракеты стала совсем другой - была достигнута вторая космическая, благодаря которой появилась возможность покидать орбиту Земли. Ещё несколько лет серия Р-7 модернизировалась и совершенствовалась. Менялись двигатели космических ракет, много экспериментировали с третьей ступенью. Следующие попытки были удачными. Скорость космической ракеты позволяла не просто покинуть орбиту Земли, но и задуматься об изучении других планет Солнечной системы.

Но сначала внимание человечества было практически полностью приковано к естественному спутнику Земли - Луне. В 1959 году к ней вылетела советская космическая станция "Луна-1", которая должна была совершить жёсткую посадку на лунной поверхности. Однако аппарат из-за недостаточно точных расчётов прошёл несколько мимо (в шести тысячах километров) и устремился к Солнцу, где и пристроился на орбиту. Так у нашего светила появился первый собственный искусственный спутник - случайный подарок. Но наш естественный спутник недолго находился в одиночестве, и в этом же 1959-м к нему прилетела "Луна-2", выполнив свою задачу абсолютно правильно. Через месяц "Луна-3" доставила нам фотографии обратной стороны нашего ночного светила. А в 1966-м прямо в Океане Бурь мягко приземлилась "Луна-9", и мы получили панорамные виды лунной поверхности. Лунная программа продолжалась ещё долго, до той поры, когда американские космонавты на ней высадились.

Юрий Гагарин

День 12 апреля стал одним из самых знаменательных дней в нашей стране. Невозможно передать мощь народного ликования, гордости, поистине счастья, когда объявили о первом в мире полёте человека в космос. Юрий Гагарин стал не только национальным героем, ему рукоплескал весь мир. И потому 12 апреля 1961 года - день, триумфально вошедший в историю, стал Днём космонавтики. Американцы срочно попытались ответить на этот беспрецедентный шаг, чтобы разделить с нами космическую славу. Через месяц состоялся вылет Алана Шепарда, но на орбиту корабль не выходил, это был суборбитальный полёт по дуге, а орбитальный у США получился только в 1962-м.

Гагарин полетел в космос на космическом корабле "Восток". Это особая машина, в которой Королёв создал исключительно удачную, решающую множество всевозможных практических задач космическую платформу. Тогда же, в самом начале шестидесятых, разрабатывался не только пилотируемый вариант космического полёта, но был выполнен и проект фото-разведчика. "Восток" вообще имел множество модификаций - более сорока. И сегодня эксплуатируются спутники из серии "Бион" - это прямые потомки корабля, на котором совершён первый полёт человека в космос. В этом же 1961 году гораздо более сложная экспедиция была у Германа Титова, который целые сутки провёл в космосе. Соединённые Штаты смогли это достижение повторить только в 1963 году.

"Восток"

Для космонавтов на всех кораблях "Восток" было предусмотрено катапультное кресло. Это было мудрым решением, поскольку одно-единственное устройство выполняло задачи и на старте (аварийное спасение экипажа), и мягкую посадку спускаемого аппарата. Конструкторы сосредоточили усилия на разработке одного устройства, а не двух. Это уменьшало технический риск, в авиации система катапульт в то время уже была отлично отработана. С другой стороны, огромный выигрыш во времени, чем если проектировать принципиально новое устройство. Ведь космическая гонка продолжалась, и её выигрывал с довольно большим отрывом СССР.

Таким же образом приземлился и Титов. Ему повезло опуститься на парашюте около железной дороги, по которой ехал поезд, и его немедленно сфотографировали журналисты. Система посадки, которая стала самой надёжной и мягкой, разработана в 1965 году, в ней используется гамма-высотомер. Она служит и до сих пор. В США этой технологии не было, именно поэтому все их спускаемые аппараты, даже новые Dragon SpaceX не приземляются, а приводняются. Только шаттлы являются исключением. А в 1962 году СССР уже начал групповые полёты на космических кораблях "Восток-3" и "Восток-4". В 1963 году отряд советских космонавтов пополнился первой женщиной - Валентина Терешкова побывала в космосе, став первой в мире. Тогда же Валерий Быковский поставил не побитый до сих пор рекорд длительности одиночного полёта - он пробыл в космосе пять суток. В 1964 году появился многоместный корабль "Восход", США и тут отстали на целый год. А в 1965-м Алексей Леонов вышел в открытый космос!

"Венера"

В 1966 году СССР начал межпланетные перелёты. Космический корабль "Венера-3" совершил жёсткую посадку на соседнюю планету и доставил туда глобус Земли и вымпел СССР. В 1975-м "Венере-9" удалось совершить мягкую посадку и передать изображение поверхности планеты. А "Венера-13" сделала цветные панорамные снимки и звукозапись. Серия АМС (автоматические межпланетные станции) для изучения Венеры, а также окружающего космического пространства продолжает совершенствоваться и сейчас. На Венере условия жёсткие, а достоверной информации о них практически не было, разработчики ничего не знали ни о давлении, ни о температуре на поверхности планеты, всё это, естественно, осложняло исследование.

Первые серии спускаемых аппаратов даже плавать умели - на всякий случай. Тем не менее поначалу полёты удачными не были, зато впоследствии СССР настолько преуспел в венерианских странствиях, что эту планету стали называть русской. "Венера-1" - первый из космических аппаратов в истории человечества, предназначенный для полёта на другие планеты и их исследования. Был запущен в 1961 году, через неделю потерялась связь от перегрева датчика. Станция стала неуправляемой и смогла сделать только первый в мире пролёт вблизи Венеры (на расстоянии около ста тысяч километров).

По стопам

"Венера-4" помогла нам узнать, что на этой планете двести семьдесят один градус в тени (ночная сторона Венеры), давление до двадцати атмосфер, а сама атмосфера - девяносто процентов углекислого газа. А ещё этот космический аппарат обнаружил водородную корону. "Венера-5" и "Венера-6" многое поведали нам о солнечном ветре (потоки плазмы) и его структуре вблизи планеты. "Венера-7" уточнила данные о температуре и давлении в атмосфере. Всё оказалось ещё сложнее: температура ближе к поверхности была 475 ± 20°C, а давление выше на порядок. На следующем космическом аппарате было переделано буквально всё, и через сто семнадцать суток "Венера-8" мягко привенерилась на дневной стороне планеты. На этой станции был фотометр и множество дополнительных приборов. Главное - была связь.

Оказалось, что освещение на ближайшей соседке почти не отличается от земного - как у нас в пасмурный день. Да там не просто пасмурно, погодка разгулялась по-настоящему. Картины увиденного аппаратурой просто ошеломили землян. Помимо этого, был исследован грунт и количество аммиака в атмосфере, измерена скорость ветра. А "Венера-9" и "Венера-10" смогли показать нам "соседку" по телевизору. Это первые в мире записи, переданные с другой планеты. А сами эти станции и теперь искусственные спутники Венеры. На эту планету последними летали "Венера-15" и "Венера-16", которые тоже стали спутниками, предварительно снабдив человечество абсолютно новыми и нужными знаниями. В 1985 году продолжением программы стали "Вега-1" и "Вега-2", которые изучали не только Венеру, но и комету Галлея. Следующий полёт планируется в 2024 году.

Кое-что о космической ракете

Поскольку параметры и технические характеристики у всех ракет отличаются друг от друга, рассмотрим ракету-носитель нового поколения, например "Союз-2.1А". Она является трёхступенчатой ракетой среднего класса, модифицированным вариантом "Союза-У", который весьма успешно эксплуатируется с 1973 года.

Данная ракета-носитель предназначена для того, чтобы обеспечить запуск космических аппаратов. Последние могут иметь военное, народнохозяйственное и социальное назначение. Эта ракета может выводить их на разные типы орбит - геостационарные, геопереходные, солнечно-синхронные, высокоэллиптические, средние, низкие.

Модернизация

Ракета предельно модернизирована, здесь создана принципиально иная цифровая система управления, разработанная на новой отечественной элементной базе, с быстродействующей бортовой цифровой вычислительной машиной с гораздо большим объёмом оперативной памяти. Цифровая система управления обеспечивает ракету высокоточным выведением полезных нагрузок.

Кроме того, установлены двигатели, на которых усовершенствованы форсуночные головки первой и второй ступеней. Действует другая система телеизмерений. Таким образом повысилась точность выведения ракеты, её устойчивость и, разумеется, управляемость. Масса космической ракеты не увеличилась, а полезный выводимый груз стал больше на триста килограммов.

Технические характеристики

Первая и вторая ступени ракеты-носителя оснащены жидкостными ракетными двигателями РД-107А и РД-108А от НПО "Энергомаш" имени академика Глушко, а на третьей ступени установлен четырёхкамерный РД-0110 от КБ "Химавтоматики". Ракетным топливом служат жидкий кислород, являющийся экологически чистым окислителем, а также слаботоксичное горючее - керосин. Длина ракеты - 46,3 метра, масса на старте - 311,7 тонн, а без головной части - 303,2 тонны. Масса конструкции ракеты-носителя - 24,4 тонны. Компоненты топлива весят 278,8 тонн. Лётные испытания "Союза-2.1А" начались в 2004 году на космодроме Плесецк, и прошли они успешно. В 2006-м ракета-носитель произвела первый коммерческий полёт - вывела на орбиту европейский метеорологический космический аппарат "Метоп".

Нужно сказать, что у ракет разные возможности вывода полезной нагрузки. Носители есть лёгкие, средние и тяжёлые. Ракета-носитель "Рокот", например, выводит космические аппараты на околоземные низкие орбиты - до двухсот километров, а потому ей по силам нагрузка в 1,95 тонн. А вот "Протон" - тяжёлого класса, на низкую орбиту он может вывести 22,4 тонн, на геопереходную - 6,15, а на геостационарную - 3,3 тонны. Рассматриваемая нами ракета-носитель предназначена для всех площадок, которыми пользуется "Роскосмос": Куру, Байконур, Плесецк, Восточный, и работает в рамках совместных российско-европейских проектов.