В каких процессах обогащения используется смачиваемость минералов. Обогащение полезных ископаемых. Удельная магнитная восприимчивость

Задача основных процессов обогащения  разделить полезный минерал и пустую породу. В их основе лежат различия в физических и физико-химических свойствах разделяемых минералов.

Наиболее часто в практике обогащения используются гравитационные, флотационные и магнитные методы обогащения.

2.1. Гравитационный метод обогащения

Гравитационным методом обогащения называют такой, в которых разделение минеральных частиц, отличающихся плотностью, размером и формой, обусловлено различием в характере и скорости их движения в текучих средах под действием силы тяжести и сил сопротивления. Гравитационный метод занимает ведущее место среди других методов обогащения. Гравитационный метод представлен рядом процессов. Они могут быть собственно гравитационными (разделение в поле силы тяжести – обычно для относительно крупных частиц) и центробежными (разделение в центробежном поле – для мелких частиц). Если разделение происходит в воздушной среде, то процессы называют пневматическими; в остальных случаях – гидравлическими. Наибольшее распространение в обогащении получили собственно гравитационные процессы, осуществляемые в воде.

По типу используемых аппаратов гравитационные процессы можно разделить на отсадку, обогащение в тяжелых средах, концентрацию на столах, обогащение на шлюзах, в желобах, винтовых сепараторах, обогащение на центробежных концентраторах, противоточных сепараторах и др. Также к гравитационным процессам обычно относят промывку.

Гравитационные процессы используют при обогащении углей и сланцев, золото- и платиносодержащих руд, оловянных руд, окисленных железных и марганцевых руд, хромовых, вольфрамитовых и руд редких металлов, строительных материалов и некоторых других видов сырья.

Основные преимущества гравитационного метода в экономичности и экологической чистоте. Также к преимуществам можно отнести высокую производительность, характерную для большинства процессов. Основной недостаток в трудности эффективного обогащения мелких классов.

Гравитационные процессы используют как самостоятельно, так и в сочетании с другими обогатительными методами.

Наиболее распространенным методом гравитационного обогащения является отсадка. Отсадкой называется процесс разделения минеральных частиц по плотности в водной или воздушной среде, пульсирующей относительно разделяемой смеси в вертикальном направлении.

Этим методом можно обогащать материалы крупностью от 0,1 до 400 мм. Отсадка применяется при обогащении углей, сланцев, окисленных железных, марганцевых, хромитовых, касситеритовых, вольфрамитовых и других руд, а также золотосодержащих пород.

В процессе отсадки (рис. 2.1) материал, помещенный на решете отсадочной машины, периодически разрыхляется и уплотняется. При этом зерна обогащаемого материала под влиянием сил, действующих в пульсирующем потоке, перераспределяются таким образом, что в нижней части постели сосредотачиваются частицы максимальной плотности, а в верхней – минимальной (размеры и форма частиц также оказывают влияние на процесс расслоения).

При обогащении мелкого материала на решето укладывают искусственную постель из материала (например, при обогащении угля используется постель из пегматита), плотность которого больше плотности легкого минерала, но меньше плотности тяжелого. крупность постели в 5-6 раз больше крупности максимального куска исходной руды и в несколько раз крупнее отверстий в решете отсадочной машины. Более плотные частицы проходят сквозь постель и решето и разгружаются через специальную насадку на дне камеры отсадочной машины.

При обогащении крупного материала постель на решето специально не укладывают, она образуется сама из обогащаемого материала и называется естественной (обогащаемый материал крупнее, чем отверстия решета). Плотные частицы проходят сквозь постель двигаются над решетом и разгружаются через специальную разгрузочную щель в решете и, далее, элеватором из камеры машины.

И, наконец, при обогащении широко классифицированного материала (есть и мелкие и крупные частицы), мелкие плотные частицы разгружаются через решето, крупные плотные – через разгрузочную щель (рис 2.1).

В настоящее время известно около 100 конструкций отсадочных машин. Машины можно классифицировать следующим образом: по типу среды разделения - гидравлические и пневматические; по способу создания пульсаций – поршневые с подвижным решетом, диафрагмовые, беспоршневые или воздушно-пульсационные (рис. 2.2). Также машины могут быть для обогащения мелких классов, крупных классов, ширококлассифицированного материала. Наиболее распространена гидравлическая отсадка. А среди машин чаще всего применяются беспоршневые.

Поршневые отсадочные машины могут применяться для отсадки материала крупностью – 30 + 0 мм. Колебания воды создаются движением поршня, ход которого регулируется эксцентриковым механизмом. Поршневые отсадочные машины в настоящее время не выпускаются и фактически полностью заменены другими типами машин.

Диафрагмовые отсадочные машины применяют для отсадки железных, марганцевых руд и руд редких и благородных металлов крупностью Диафрагмовые отсадочные машины применяются для обогащения руд крупностью от 30 до 0,5 (0,1) мм. Они изготавливаются с различным расположением диафрагмы.

Диафрагмовые машины с горизонтальной диафрагмой обычно имеют две или три камеры. Колебания воды в камерах создаются движениями вверх и вниз конических днищ, обеспечиваемыми одним или несколькими (в зависимости от типа машины) эксцентрическими приводными механизмами. Ход конического днища регулируется поворотом эксцентриковой втулки относительно вала и затяжкой гаек, а частота его качаний – сменой шкива на валу электродвигателя. Корпус машины у каждой камеры соединен с коническим днищем резиновыми манжетами (диафрагмами).

Диафрагмовые отсадочные машины с вертикальной диафрагмой имеют две или четыре камеры с пирамидальными днищами, разделенными вертикальными перегородкой, в стенку которой вмонтирована гибко связанная с ней металлическая диафрагма, совершающая возвратно-поступательные движения.

Отсадочные машины с подвижным решетом в отечественной практике применяются для обогащения марганцевых руд крупностью от 3 до 40 мм. Машины серийно не изготавливаются. Приводной кривошипно-шатунный механизм решета расположен над корпусом машины. Решето совершает дугообразные движения, при котором материал разрыхляется и продвигается вдоль решета. Машины имеют двух- , трех- и четырехсекционные решета площадью 2,9-4 м 2 . Тяжелые продукты разгружаются через боковую или центральную щель. В зарубежной практике применяют отсадочные машины с подвижным решетом, позволяющие обогащать материал крупностью до 400 мм. Например, машина фирмы «Хумбольт – Ведаг» позволяет обогащать материал крупностью –400+30 мм. Отличительной особенностью этой машины является то, что один конец решета закреплен на оси и следовательно не движется в вертикальном направлении. Разгрузка продуктов разделения осуществляется при помощи элеваторного колеса. Машина отличается высокой экономичностью в работе.

Воздушно-пульсационные (беспоршневые) отсадочные машины (рис. 3.3) отличаются от других использованием сжатого воздуха для создания колебаний воды в отсадочном отделении. Машины имеют воздушное и отсадочное отделение и снабжены универсальным приводом, обеспечивающим симметричный и асимметричный циклы отсадки и возможность регулирования подачи воздуха в камеры. Основное преимущество беспоршневых машин заключается в возможности регулирования цикла отсадки и достижении высокой точности разделения при повышенной высоте постели. Эти машины применяются в основном для обогащения углей, реже руд черных металлов. Машины могут иметь боковые воздушные камеры (рис.2.3), подрешетные воздушные камеры, патрубочные подрешетные воздушные камеры.

При боковом расположении воздушных камер равномерность пульсаций воды в отсадочном отделении сохраняется при ширине камер не более 2 м. Для обеспечения равномерного распределения поля скоростей пульсирующего потока по площади отсадочного решета в современных конструкциях отсадочных машин применяют гидравлические обтекатели на конце перегородки между воздушным и отсадочным отделением.

Сжатый воздух поступает в воздушное отделение периодически через пульсаторы различных типов (роторные, клапанные и др.), устанавливаемые по одному на каждую камеру; также периодически воздух выпускается из воздушного отделения в атмосферу. При впуске воздуха уровень воды в воздушном отделении понижается, а в отсадочном отделении, естественно, повышается (т.к. это «сообщающиеся сосуды»); при выпуске воздуха происходят обратные явления. Благодаря этому совершаются колебательные движения в отсадочном отделении.

Обогащение полезных ископаемых в тяжелых средах основано на разделении минеральной смеси по плотности. Процесс происходит в соответствии с законом Архимеда в средах с плотностью, промежуточной между плотностью удельно-легкого и удельно-тяжелого минерала. Удельно-легкие минералы всплывают, а удельно-тяжелые погружаются на дно аппарата. Обогащение в тяжелых средах широко применяют в качестве основного процесса для углей трудной и средней категорий обогатимости, а также сланцев, хромитовых, марганцевых, сульфидных руд цветных металлов и др. Эффективность разделения в тяжелых средах выше эффективности обогащения на отсадочных машинах (это самый эффективный гравитационный процесс).

В качестве тяжелых сред применяют тяжелые жидкости и тяжелые суспензии. Между ними есть одно принципиальное различие. Тяжелая жидкость однородна (однофазна), тяжелая суспензия неоднородна (состоит из воды и взвешенных в ней частиц - утяжелителя). Поэтому обогащение в тяжелой жидкости в принципе приемлемо для частиц любой крупности.

Тяжелую суспензию можно считать псевдожидкостью с определенной плотностью лишь для достаточно больших (по сравнению с размерами частиц утяжелителя) частиц. Кроме того, вследствие общего движения частиц утяжелителя в определенном направлении под воздействием силового поля, в котором производится обогащение (гравитационного или центробежного), для получения однородной по плотности суспензии в аппаратах приходится производить ее перемешивание. Последнее неизбежно оказывает влияние и на частицы, подвергаемые обогащению. Поэтому нижний предел крупности частиц, обогащаемых в тяжелой суспензии, ограничен и составляет: при гравитационных процессах - для руд 2-4 мм, для углей - 4-6 мм; при центробежных процессах для руд - 0,25-0,5 мм, для углей 0,5-1 мм.

В качестве промышленной тяжелой среды используют тяжелые суспензии, т.е. взвесь мелких удельно-тяжелых частиц (утяжелителя) в среде, которой обычно является вода. (Тяжелые жидкости в промышленности не применяют из-за их высокой стоимости и токсичности) Гидравлические суспензии называют просто суспензиями. Наиболее часто используемыми утяжелителями являются магнетит, ферросилиций и галенит. Крупность частиц утяжелителя обычно0,15мм. Плотность суспензии определяется выражением:

 c = С( у – 1) + 1, г/см 3 ,

где: С – концентрация утяжелителя, д. ед.,  у – плотность утяжелителя, г/см 3 . Таким образом, меняя концентрацию утяжелителя можно приготовить суспензию требуемой плотности.

Обогащение в тяжелых суспензиях средне и крупнокускового материала производят в гравитационных сепараторах (в сепараторах со статическими условиями разделения). Обогащение мелкозернистого материала осуществляют в центробежных сепараторах (сепараторах с динамическими условиями разделения) – гидроциклонах. Остальные виды тяжелосредных сепараторов (аэросуспензионные, вибрационные) используются редко.

Тяжелосредные гравитационные сепараторы можно разделить на три основных типа  колесные, конусные и барабанные. Колесные сепараторы (рис.2.4) применяют для обогащения материала крупностью 400-6 мм, в отечественной практике в основном для угля и сланца. Чаще всего используют СКВ – сепаратор колесный с вертикальным элеваторным колесом.

В конусных суспензионных сепараторах (рис. 2.5) тяжелая фракция, как правило, разгружается внутренним или наружным аэролифтом. Эти сепараторы применяются для обогащения рудного материала крупностью –80(100)+6(2) мм

Конусные сепараторы с наружным аэролифтом (рис. 2.5) состоят из верхней цилиндрической и нижней конической частей. Нижняя коническая часть заканчивается переходным коленом, соединяющим конус с аэролифтом, поднимающим осевшие частицы. В трубу аэролифта через –форсунки подается сжатый воздух при давлении порядка 3-4·10 5 Па. Диаметр трубы аэролифта принимается равным не менее, чем трем размерам наибольшего куска руды. Всплывший продукт вместе с суспензией сливается в желоб, а тяжелый – подается аэролифтом в разгрузочную камеру.

Барабанный сепаратор (рис. 2.6) используется для обогащения рудного материала крупностью 150+3(5) мм, при высокой плотности обогащаемого материала.

Тяжелосредные обогатительные гидроциклоны конструктивно похожи на классифицирующие. Через питающий патрубок тангенциально подается обогащаемый материал вместе с тяжелой суспензией. Под действием центробежной силы (во много раз превышающей силу тяжести) происходит расслоение материала: плотные частицы перемещаются ближе к стенкам аппарата и «внешним вихрем» транспортируются к разгрузочной (песковой) насадке, легкие частицы перемещаются ближе к оси аппарата и «внутренним вихрем» транспортируются к сливной насадке.

Технологические схемы обогащения в тяжелых суспензиях практически одинаковы для большинства работающих установок. Процесс состоит из следующих операций: подготовка тяжелой суспензии, подготовка руды к разделению, разделение руды в суспензии на фракции различной плотности, дренаж рабочей суспензии и отмывка продуктов разделения, регенерация утяжелителя.

Обогащение в потоках, текущих по наклонным поверхностям, производится на концентрационных столах, шлюзах, в желобах и винтовых сепараторах. Движение пульпы в этих аппаратах происходит по наклонной поверхности под действием силы тяжести при малой (по сравнению с шириной и длиной) толщине потока. Обычно она превышает размер максимального зерна в 2-6 раз.

Концентрация (обогащение) на столах – это процесс разделения по плотности в тонком слое воды, текущей по слабонаклонной плоскости (деке), совершающей асимметричные возвратно-поступательные движения в горизонтальной плоскости перпендикулярно направлению движения воды. Концентрацию на столе применяют при обогащении мелких классов – 3+0,01 мм для руд и –6(12)+0,5 мм для углей. Данный процесс используется при обогащении руд олова, вольфрама, редких, благородных и черных металлов и др.; для обогащения мелких классов углей, в основном для их обессеривания. Концентрационный стол (рис. 2.7) состоит из деки (плоскости) с узкими рейками (рифлями); опорного устройства; приводного механизма. Угол наклона деки  = 410. Для легких частиц преобладающими являются гидродинамическая и подъемная турбулентная силы, поэтому легкие частицы смывает в перпендикулярном к деке направлении. Частицы промежуточной плотности попадают между тяжелыми и легкими частицами.

Шлюз (рис. 2.8) представляет собой наклонный желоб прямоугольного сечения с параллельными бортами, на дно которого укладывают улавливающие покрытия (жесткие трафареты или мягкие коврики), предназначенные для удержания осевших частиц тяжелых минералов. Шлюзы применяют для обогащения золота, платины, касситерита из россыпей и других материалов, обогащаемые компоненты которых значительно различаются по плотности. Шлюзы характеризуются высокой степенью концентрации. Материал на шлюз подают непрерывно до тех пор, пока ячейки трафаретов не заполнятся преимущественно частицами плотных минералов. После этого загрузку материала прекращают и производят сполоск шлюза.

Струйный желоб (рис 2.9) имеет плоское днище и сходящиеся под некоторым углом борта. Пульпа загружается на широкий верхний конец желоба. У конца желоба в нижних слоях располагаются частицы большей плотности, а в верхних слоях  меньшей. В конце желоба материал специальными рассекателями разделяется на концентрат, промпродукт и хвосты. Суживающиеся желоба применяют при обогащении россыпных руд. Аппараты типа суживающихся желобов делят на две группы: 1) аппараты, состоящие из набора отдельных желобов в различных компоновочных вариантах; 2) конусные сепараторы, состоящие из одного или нескольких конусов, каждый из которых представляет собой как бы набор радиально установленных суживающихся желобов с общим днищем.

У винтовых сепараторов неподвижный наклонный гладкий желоб выполнен в виде спирали с вертикальной осью (рис.2.10), их используют для разделения материала крупностью от 0,1 до 3 мм. При движении в закрученном потоке помимо обычных гравитационных и гидродинамических сил, действующих на зерна, развиваются центробежные силы. Тяжелые минералы концентрируются у внутреннего борта желоба, а легкие – у внешнего. Затем продукты разделения разгружают из сепаратора при помощи рассекателей, стоящих в конце желоба.

В центробежных концентраторах центробежная сила, действующая на тело, во много раз больше, чем сила тяжести и материал разделяется под действием центробежной силы (сила тяжести оказывает лишь небольшое влияние). В тех же случаях, если центробежная сила и сила тяжести соизмеримы и сепарация происходит под действием обеих сил, обогащение принято называть центробежно-гравитационным (винтовые сепараторы).

Создание центробежного поля в центробежных концентраторах принципиально может осуществляться двумя путями: тангенциальной подачей потока под давлением в закрытый и неподвижный цилиндрический сосуд; закручиванием свободно подаваемого потока в открытом вращающемся сосуде и, соответственно, центробежные концентраторы принципиально могут быть разделены на два типа: напорные циклонные аппараты; безнапорные аппараты-центрифуги.

По принципу работы центробежные концентраторы циклонного типа имеют много общего с гидроциклонами, но отличаются значительно большим углом конусности (до 140). Благодаря этому в аппарате образуется «постель» из обогащаемого материала, играющая роль аналогичную тяжелой суспензии в тяжелосредных обогатительных циклонах. И разделение происходит аналогично. По сравнению с тяжелосредными гидроциклонами эти значительно экономичнее в работе, но дают худшие технологические показатели.

Работа концентраторов второго типа напоминает работу обычной центрифуги. Центробежные концентраторы этого типа используют для обогащения грубозернистых песков, при разведке золотосодержащих россыпных месторождений, при извлечении мелкого свободного золота из различных продуктов. Аппарат представляет собой полусферическую чашу, футерованную рифленой резиновой вставкой. Чаша укреплена на специальной площадке (платформе), получающей вращение от электродвигателя через клиноременную передачу. Пульпу обогащаемо материала загружают в аппарат, легкие частицы вместе с водой сливаются через борта, тяжелые застревают в нарифлениях. Для разгрузки концентрата, уловленного рифленой резиновой поверхностью, чашу останавливают и производят сполоск (есть и конструкции позволяющие вести непрерывную разгрузку). При работе на грубых золотосодержащих песках концентратор обеспечивает очень высокую степень сокращения – до 1000 раз и более при высоком (до 96-98%) извлечении золота.

Противоточная водная сепарация применяется в отечественной практике для переработки энергетических и разубоженных углей. Аппаратами для обогащения данным методом являются шнековые и крутонаклонные сепараторы. Шнековые горизонтальные и вертикальные применяются для обогащения углей крупностью 6 – 25 мм и 13 – 100 мм, а также для обогащения отсевов и крупнозернистых шламов. Крутонаклонные сепараторы применяются для обогащения разубоженных углей крупностью до 150 мм. Преимуществом противоточных сепараторов является простота технологический схемы. Во всех противоточных сепараторах материал делится на два продукта: концентрат и отходы. Сформированные в процессе сепарации встречные транспортные потоки продуктов разделения движутся в пределах рабочей зоны с заданным гидравлическим сопротивлением их относительному перемещению, при этом поток легких фракций является попутным потоку разделительной среды, а поток тяжелых фракций встречным. Рабочие зоны сепараторов представляют собой закрытые каналы, оснащенные системой однотипных элементов, обтекаемых потоком и обуславливающих образование определенным образом организованной системы вторичных течений и вихрей. Как правило, в таких системах исходный материал разделяется по плотности, значительно превосходящей плотность разделительной среды.

Необходимым условием подготовки песков россыпных месторождений и руд осадочного происхождения к обогащению является освобождение их от глины. Частицы минералов в этих рудах и песках не связаны взаимным прорастанием, но сцементированы в плотную массу мягким и вязким глинистым веществом.

Процесс дезинтеграции (разрыхление, диспергирование) глинистого материала, цементирующего зерна песков или руды, с одновременным отделением его от рудных частиц с помощью воды и соответствующих механизмов называют промывкой . Дезинтеграция обычно происходит в воде. При этом глина в воде разбухает, и это облегчает ее разрушение. В результате промывки получают отмытый материал (руда или пески) и шламы, содержащие диспергированные в воде тонкозернистые глинистые частицы. Промывка широко применяется при обогащении руд черных металлов (железных, марганцевых), песков россыпных месторождений редких и благородных металлов, строительного сырья, каолинового сырья, фосфоритов и других полезных ископаемых. Промывка может иметь самостоятельное значение, если в результате ее получают товарную продукцию. Чаще она применяется как подготовительная операция для подготовки материала к последующему обогащению. Для промывки применяют: грохота, бутары, скруббера, скруббер-бутары, корытные мойки, вибромойки и другие аппараты.

Пневматические процессы обогащения основаны на принципе разделения полезных ископаемых по крупности (пневматическая классификация) и плотности (пневматическая концентрация) в восходящей или пульсирующей струе воздуха. Он применяется при обогащении углей, асбеста и других полезных ископаемых, обладающих незначительной плотностью; при классификации фосфоритов, железных руд, сурика и других полезных ископаемых в циклах дробления и сухого измельчения, а также при обеспыливании воздушных потоков в цехах обогатительных фабрик. Применение пневматического метода обогащения целесообразно в суровых климатических условиях северных и восточных районов Сибири или в районах, где ощущается недостаток воды, а также для переработки полезных ископаемых, содержащих легкоразмокаемую породу, образующую большое количество шламов, нарушающих четкость разделения. Преимущества пневматических процессов в их экономичности, простоте и удобстве утилизации хвостов обогащения, главный недостаток – в сравнительно низкой эффективности разделения из-за чего эти процессы используются весьма редко.

Обогаще́ние поле́зных ископа́емых - совокупность процессов первичной обработки минерального сырья, имеющая своей целью отделение всех ценных минералов от пустой породы, а также взаимное разделение ценных минералов.

Энциклопедичный YouTube

    1 / 5

    09 03 Лекция «Как ископаемые становятся полезными?»

    Кафедра Обогащения полезных ископаемых

    Видеолекция Классификация флотационных реагентов

    Обогащение угля (эмулятор)

    Видеолекция Механические и флотационные машины

    Субтитры

Общая информация

При обогащении возможно получение как конечных товарных продуктов (асбест , графит и др.), так и концентратов, пригодных для дальнейшей химической или металлургической переработки. Обогащение - наиважнейшее промежуточное звено между добычей полезных ископаемых и использованием извлекаемых веществ. В основе теории обогащения лежит анализ свойств минералов и их взаимодействия в процессах разделения - минералургия .

Обогащение позволяет существенно увеличить концентрацию ценных компонентов. Содержание важных цветных металлов - меди , свинца , цинка - в рудах составляет 0,3-2 %, а в их концентратах - 20-70 %. Концентрация молибдена увеличивается от 0,1-0,05 % до 47-50 %, вольфрама - от 0,1-0,2 % до 45-65 %, зольность угля снижается от 25-35 % до 2-15 %. В задачу обогащения входит также удаление вредных примесей минералов (мышьяк , сера , кремний и т. д.). Извлечение ценных компонентов в концентрат в процессах обогащения составляет от 60 до 95 %.

Операции обработки, которым подвергают на обогатительной фабрике горную массу, подразделяют на: основные (собственно обогатительные); подготовительные и вспомогательные.

Все существующие методы обогащения основаны на различиях в физических или физико-химических свойствах отдельных компонентов полезного ископаемого. Существует, например, гравитационное , магнитное , электрическое , флотационное , бактериальное и др. способы обогащения.

Технологический эффект обогащения

Предварительное обогащение полезных ископаемых позволяет:

  • увеличить промышленные запасы минерального сырья за счёт использования месторождений бедных полезных ископаемых с низким содержанием полезных компонентов;
  • повысить продуктивность труда на горных предприятиях и снизить стоимость добываемой руды за счёт механизации горных работ и сплошной выемки полезного ископаемого вместо выборочной;
  • повысить технико-экономические показатели металлургических и химических предприятий при переработке обогащённого сырья за счёт снижения затрат топлива, электроэнергии, флюсов, химических реактивов, улучшения качества готовых продуктов и снижения потерь полезных компонентов с отходами;
  • осуществить комплексное использование полезных ископаемых, потому что предварительное обогащение позволяет извлечь из них не только основные полезные компоненты, но и сопутствующие, которые содержатся в малых количествах;
  • снизить затраты на транспортировку к потребителям продукции горного производства за счёт транспортирования более богатых продуктов, а не всего объёма добытой горной массы, содержащей полезное ископаемое;
  • выделить из минерального сырья вредные примеси, которые при дальнейшей их переработке могут ухудшать качество конечной продукции, загрязнять окружающую среду и угрожать здоровью людей.

Переработка полезных ископаемых осуществляется на обогатительных фабриках , представляющих собой сегодня мощные высокомеханизированные предприятия со сложными технологическими процессами.

Классификация процессов обогащения

Переработка полезных ископаемых на обогатительных фабриках включает ряд последовательных операций, в результате которых достигается отделение полезных компонентов от примесей. По своему назначению процессы переработки полезных ископаемых разделяют на подготовительные, основные (обогатительные) и вспомогательные (заключительные).

Подготовительные процессы

Подготовительные процессы предназначены для раскрытия или открытия зёрен полезных компонентов (минералов), входящих в состав полезного ископаемого, и деления его на классы крупности, удовлетворяющие технологическим требованиям последующих процессов обогащения. К подготовительным относят процессы дробления, измельчения, грохочения и классификации.

Дробление и измельчение

Дробление и измельчение - процесс разрушения и уменьшения размеров кусков минерального сырья (полезного ископаемого) под действием внешних механических, тепловых, электрических сил, направленных на преодоления внутренних сил сцепления, связывающих между собой частички твёрдого тела.

По физике процесса между дроблением и измельчением нет принципиальной разницы. Условно принято считать, что при дроблении получают частицы крупнее 5 мм , а при измельчении - мельче 5 мм . Размер наиболее крупных зёрен, до которого необходимо раздробить или измельчить полезное ископаемое при его подготовке к обогащению, зависит от размера включений основных компонентов, входящих в состав полезного ископаемого, и от технических возможностей оборудования, на котором предполагается проводить следующую операцию переработки раздробленного (измельчённого) продукта.

Раскрытие зёрен полезных компонентов - дробления или (и) измельчения сростков до полного освобождения зёрен полезного компонента и получения механической смеси зёрен полезного компонента и пустой породы (микста). Открытие зёрен полезных компонентов - дробление или (и) измельчения сростков до высвобождения части поверхности полезного компонента, что обеспечивает доступ к нему реагента .

Дробление проводят на специальных дробильных установках . Дроблением называется процесс разрушения твердых тел с уменьшением размеров кусков до заданной крупности, путём действия внешних сил, преодолевающих внутренное силы сцепления, связывающие между собой частицы твердого вещества.

Грохочение и классификация

Грохочение и классификация применяются с целью разделения полезного ископаемого на продукты разной крупности - классы крупности. Грохочение осуществляется рассеванием полезного ископаемого на решето и ситах с калиброванными отверстиями на мелкий (подрешётный) продукт и крупный (надрешётный). Грохочение применяется для разделения полезных ископаемых по крупности на просевных (просеивающих) поверхностях, с размерами отверстий от миллиметра до нескольких сотен миллиметров.

Грохочение осуществляется специальными машинами - грохотами .

Классификация материала по крупности производится в водной или воздушной среде и базируется на использовании различий в скоростях оседания частичек разной крупности. Большие частички оседают быстрее и концентрируются в нижней части классификатора, мелкие частички оседают медленнее и выносятся из аппарата водным или воздушным потоком. Полученные при классификации крупные продукты называются песками, а мелкие - сливом (при гидравлической классификации) или тонким продуктом (при пневмоклассификации). Классификация используется для разделения мелких и тонких продуктов по зерну размером не более 1 мм.

Основные (обогатительные) процессы

Основные процессы обогащения предназначены для выделения из исходного минерального сырья одного или нескольких полезных компонентов. Исходный материал в процессе обогащения разделяется на соответствующие продукты - концентрат(ы), пром.продукты и отвальные хвосты. В процессах обогащения используют отличия минералов полезного компонента и пустой породы в плотности, магнитной восприимчивости , смачиваемости , электропроводности , крупности, форме зёрен, химических свойствах и др.

Различия в плотности минеральных зёрен используются при обогащении полезных ископаемых гравитационным методом . Его широко применяют при обогащении угля , руд и нерудного сырья.

Полезные ископаемые, компоненты которых имеют различия в электропроводности или имеют способность под действием тех или иных факторов приобретать разные по величине и знаку электрические заряды , могут обогащаться способом электрической сепарации . К таким полезным ископаемым относятся апатитовые , вольфрамовые , оловянные и другие руды.

Обогащение по крупности используется в тех случаях, когда полезные компоненты представлены более крупными или, наоборот, более мелкими зёрнами в сравнении с зёрнами пустой породы. В россыпях полезные компоненты находятся в виде мелких частичек, поэтому выделение крупных классов позволяет избавиться от значительной части породных примесей.

Различия в форме зёрен и коэффициенте трения позволяет отделять плоские чешуйчатые частички слюды или волокнистые агрегаты асбеста от частичек породы, которые имеют округлую форму. При движении по наклонной плоскости волокнистые и плоские частички скользят, а округлые зёрна скатываются вниз. Коэффициент трения качения всегда меньше коэффициента трения скольжения, поэтому плоские и округлые частички движутся по наклонной плоскости с разными скоростями и по разным траекториям, что создаёт условия для их разделения.

Различия в оптических свойствах компонентов используется при обогащении полезных ископаемых способом фотометрической сепарации . Этим способом осуществляется механическое рудоразделение зёрен, имеющих разный цвет и блеск (например, отделение зёрен алмазов от зёрен пустой породы).

Основные заключительные операции - сгущение пульпы , обезвоживание и сушка продуктов обогащения. Выбор метода обезвоживания зависит от характеристик материала, который обезвоживается, (начальной влажности, гранулометрического и минералогического составов) и требований к конечной влажности. Часто необходимой конечной влажности трудно достичь за одну стадию, поэтому на практике для некоторых продуктов обогащения используют операции обезвоживания разными способами в несколько стадий.

Для обезвоживания продуктов обогащения используют способы дренирования (грохоты , элеваторы), центрифугирования (фильтрующие, осадительные и комбинированные центрифуги), сгущения (сгустители, гидроциклоны), фильтрования (вакуум-фильтры, фильтр-прессы) и термической сушки.

Кроме технологических процессов, для нормального функционирования обогатительной фабрики должны быть предусмотрены процессы производственного обслуживания: внутрицеховой транспорт полезного ископаемого и продуктов его переработки, снабжения фабрики водой, электроэнергией, теплом, технологический контроль качества сырья и продуктов переработки.

Основные методы обогащения полезных ископаемых

По виду среды, в которой производят обогащение, различают обогащение:

  • сухое обогащение (в воздухе и аэросуспензии),
  • мокрое (в воде, тяжёлых средах),
  • в поле центробежных сил ,

Гравитационные методы обогащения основываются на различии в плотности, крупности и скорости движения кусков породы в водной или воздушной среде. При разделении в тяжёлых средах преимущественное значение имеет разница в плотности разделяемых компонентов.

Для обогащения наиболее мелких частиц применяют способ флотации , основанный на разнице в поверхностных свойствах компонентов (избирательной смачиваемости водой, прилипании частиц минерального сырья к пузырькам воздуха).

Продукты обогащения полезных ископаемых

В результате обогащения полезное ископаемое разделяется на несколько продуктов: концентрат (один или несколько) и отходы. Кроме того, в процессе обогащения могут быть получены промежуточные продукты.

Концентраты

Концентраты - продукты обогащения, в которых сосредоточено основное количество ценного компонента. Концентраты в сравнении с обогащаемым материалом характеризуются значительно более высоким содержанием полезных компонентов и более низким содержанием пустой породы и вредных примесей.

Отходы

Отходы - продукты с малым содержанием ценных компонентов, дальнейшее извлечение которых невозможно технически или нецелесообразно экономически. (Данный термин равнозначен употреблявшемуся ранее термину отвальные хвосты , но не термину хвосты , которые, в отличие от отходов, присутствуют практически в каждой операции обогащения)

Промежуточные продукты

Промежуточные продукты (промпродукты) - это механическая смесь сростков с раскрытыми зёрнами полезных компонентов и пустой породы. Промпродукты характеризуются более низким в сравнении с концентратами и более высоким в сравнении с отходами содержанием полезных компонентов.

Качество обогащения

Качество полезных ископаемых и продуктов обогащения определяется содержанием ценного компонента, примесей, сопутствующих элементов, а также влажностью и крупностью.

Обогащение полезных ископаемых идеальное

Под идеальным обогащением полезных ископаемых (идеальным разделением) понимается процесс разделения минеральной смеси на компоненты, при котором полностью отсутствует засорение каждого продукта посторонними для него частичками. Эффективность идеального обогащения полезных ископаемых составляет 100 % по любым критериям.

Частичное обогащение полезных ископаемых

Частичное обогащение - это обогащение отдельного класса крупности полезного ископаемого, или выделение наиболее легко отделяемой части засоряющих примесей из конечного продукта с целью повышения концентрации в нём полезного компонента. Применяется, например, для снижения

При виде товарных ценных минералов справедливо возникает вопрос о том, каким образом из первичной руды или ископаемого может получиться столь привлекательное ювелирное изделие. Особенно с учетом того, что переработка породы как таковая представляет собой если не один из финальных, то как минимум предшествующий заключительному этапу процесс облагораживания. Ответом же на вопрос будет обогащение в ходе которого происходит базовая обработка породы, предусматривающая отделение ценного минерала от пустых сред.

Общая технология обогащения

Переработка ценных ископаемых осуществляется на специальных предприятиях по обогащению. Процесс предусматривает выполнение нескольких операций, среди которых подготовка, непосредственное расщепление и разделение породы с примесями. В ходе обогащения получают разные минералы, в том числе графит, асбест, вольфрам, рудные материалы и т. д. Не обязательно это должны быть ценные породы - есть немало фабрик, выполняющих переработку сырья, которое в дальнейшем используется в строительстве. Так или иначе, основы обогащения полезных ископаемых базируются на анализе свойств минералов, которые обуславливают и принципы разделения. К слову, необходимость отсечения разных структур возникает не только с целью получения одного чистого минерала. Распространена практика, когда из одной структуры выводится несколько ценных пород.

Дробление породы

На этом этапе производится измельчение материала на отдельные частицы. В процессе дробления задействуются механические силы, с помощью которых преодолеваются внутренние механизмы сцепления.

В результате порода делится на мелкие твердые частицы, носящие однородный характер структуры. При этом стоит различать непосредственное дробление и технику измельчения. В первом случае минеральное сырье подвергается менее глубокому разделению структуры, в ходе которого формируются частицы фракцией более 5 мм. В свою очередь измельчение обеспечивает образование элементов диаметром менее 5 мм, хотя и этот показатель зависит от того, с какой породой приходится иметь дело. В обоих случаях ставится задача максимального расщепления зерен полезного вещества так, чтобы освобождался чистый компонент без микста, то есть пустой породы, примесей и т. д.

Процесс грохочения

После завершения процесса дробления заготовленное сырье подвергается другому технологическому воздействию, которое может представлять собой и просеивание, и выветривание. Грохочение в сущности является способом классификации полученных зерен по характеристике крупности. Традиционный способ реализации данного этапа предусматривает использование решета и сита, обеспеченных возможностью калибрования ячеек. В процессе грохочения отделяются надрешетчатые и подрешетчатые частицы. В некотором роде обогащение полезных ископаемых начинается уже на этой стадии, поскольку часть примесей и миксты отделяются. Мелкая фракция размером менее 1 мм отсеивается и с помощью воздушной среды - выветриванием. Масса, напоминающая мелкофракционный песок, поднимается искусственными воздушными потоками, после чего оседает.

В дальнейшем частицы, которые оседают медленнее, отделяются от совсем маленьких пылевых элементов, задерживающихся в воздухе. Для дальнейшего сбора производных такого грохочения используют воду.

Обогатительные процессы

Процесс обогащения ставит целью выделение из исходного сырья частиц полезного ископаемого. В ходе выполнения таких процедур выделяется несколько групп элементов - полезный концентрат, отвальные хвосты и другие продукты. Принцип разделения этих частиц основывается на различиях между свойствами полезных минералов и пустой породы. Такими свойствами могут выступать следующие: плотность, смачиваемость, магнитная восприимчивость, типоразмер, электропроводность, форма и т. д. Так, процессы обогащения, использующие разницу в плотности, задействуют гравитационные методы разделения. Такой подход используется при рудного и нерудного сырья. Весьма распространено и обогащение на основе характеристик смачиваемости компонентов. В данном случае применяется флотационный метод, особенностью которого является возможность разделения тонких зерен.

Также используется магнитное обогащение полезных ископаемых, которое позволяет выделять железистые примеси из тальковых и графитовых сред, а также очищать вольфрамовые, титановые, железные и другие руды. Базируется эта техника на разнице в воздействии магнитного поля на частицы ископаемых. В качестве оборудования задействуются специальные сепараторы, которые также используют для восстановления магнетитовых суспензий.

Заключительные этапы обогащения

К основным процессам этого этапа стоит отнести обезвоживание, сгущение пульпы и сушку полученных частиц. Подбор оборудования для обезвоживания осуществляется на основе химико-физических характеристик минерала. Как правило, данная процедура выполняется в несколько сеансов. При этом необходимость в ее выполнении возникает не всегда. Например, если в процессе обогащения использовалась электрическая сепарация, то обезвоживание не требуется. Помимо подготовки продукта обогащения к дальнейшим процессам переработки, должна быть предусмотрена и соответствующая инфраструктура для обращения с частицами минерала. В частности, на фабрике организуется соответствующее производственное обслуживание. Вводятся внутрицеховые транспортные средства, организуется снабжение водой, теплом и электроэнергией.

Оборудование для обогащения

На этапах измельчения и дробления задействуются специальные установки. Это механические агрегаты, которые с помощью различных приводных сил оказывают разрушающее воздействие на породу. Далее в процессе грохочения используют решето и сито, в которых предусматривается возможность калибрования отверстий. Также для просеивания применяют более сложные машины, которые называются грохотами. Непосредственно обогащение выполняют электрические, гравитационные и магнитные сепараторы, которые используются в соответствии с конкретным принципом разделения структуры. После этого для обезвоживания используют технологии дренирования, в реализации которых могут применяться те же грохоты, элеваторы, центрифуги и аппараты для фильтрации. Заключительный этап, как правило, предполагает использование средств термической обработки и сушки.

Отходы процесса обогащения

В результате процесса обогащения образуется несколько категорий продуктов, которые можно разделить на два вида - полезный концентрат и отходы. Причем ценное вещество вовсе не обязательно должно представлять одну и ту же породу. Также нельзя сказать, что отходы представляют собой ненужный материал. В таких продуктах может содержаться ценный концентрат, но в минимальных объемах. При этом дальнейшее обогащение полезных ископаемых, которые находятся в структуре отходов, зачастую не оправдывает себя технологически и финансово, поэтому вторичные процессы такой переработки редко выполняются.

Оптимальное обогащение

В зависимости от условий проведения обогащения, характеристик исходного материала и самого метода может различаться качество конечного продукта. Чем выше содержание в нем ценного компонента и меньше примесей, тем лучше. Идеальное обогащение руды, к примеру, предусматривает полное отсутствие отходов в продукте. Это значит, что в процессе обогащения смеси, полученной дроблением и грохочением, из общей массы полностью были исключены частицы сора от пустых пород. Однако достичь такого эффекта удается далеко не всегда.

Частичное обогащение полезных ископаемых

Под частичным обогащением понимается разделение класса крупности ископаемого или же отсечение легко выделяемой части примесей из продукта. То есть данная процедура не ставит целью полное очищение продукта от примесей и отходов, а лишь повышает ценность исходного материала путем увеличения концентрации полезных частиц. Такая обработка минерального сырья может использоваться, к примеру, в целях понижения зольности угля. В процессе обогащения выделяется крупный класс элементов при дальнейшем смешивании концентрата необогащенного отсева с мелкой фракцией.

Проблема потерь ценной породы при обогащении

Как ненужные примеси остаются в массе полезного концентрата, так и ценная порода может выводиться вместе с отходами. Для учета таких потерь используются специальные средства, позволяющие рассчитать допустимый уровень оных для каждого из технологических процессов. То есть для всех методов отделения разрабатываются индивидуальные нормы допустимых потерь. Допустимый процент учитывается в балансе обрабатываемых продуктов с целью покрытия расхождений в расчете коэффициента влаги и механических потерь. Особенно такой учет важен, если планируется обогащение руды, в процессе которого используется глубокое дробление. Соответственно, повышается и риск потерь ценного концентрата. И все же в большинстве случаев утрата полезной породы происходит из-за нарушений в технологическом процессе.

Заключение

За последнее время технологии обогащения ценных пород сделали заметный шаг в своем развитии. Совершенствуются и отдельные процессы переработки, и общие схемы реализации отделения. Одним из перспективных направлений дальнейшего продвижения является использование комбинированных схем обработки, которые повышают качественные характеристики концентратов. В частности, комбинированию подвергаются магнитные сепараторы, в результате чего оптимизируется процесс обогащения. К новым методикам этого типа можно отнести магнитогидродинамическую и магнитогидростатическую сепарацию. При этом отмечается и общая тенденция ухудшения рудных пород, что не может не сказываться на качестве получаемого продукта. Бороться с повышением уровня примесей можно активным применением частичного обогащения, но в общем итоге увеличение сеансов переработки делает технологию неэффективной.

Основные (обогатительные) процессы

Основные (обогатительные) процессы предназначены для разделения исходного минерального сырья с раскрытыми или открытыми зёрнами полезного компонента на соответствующие продукты. В результате основных процессов полезные компоненты выделяют в виде концентратов, а породные минералы удаляют в виде отходов, которые направляют в отвал. В процессах обогащения используют отличия минералов полезного компонента и пустой породы в плотности, магнитной восприимчивости, смачиваемости, электропроводности, крупности, форме зёрен, химических свойствах и др.

Различия в плотности минеральных зёрен используются при обогащении полезных ископаемых гравитационным методом. Его широко применяют при обогащении угля, руд и нерудного сырья.

Магнитное обогащение полезных ископаемых основывается на неодинаковом воздействии магнитного поля на минеральные частички с разной магнитной восприимчивостью и на действии коэрицитивной силы. Магнитным способом, используя магнитные сепараторы, обогащают железные, марганцевые, титановые, вольфрамовые и другие руды. Кроме того, этим способом выделяют железистые примеси из графитовых, тальковых и других полезных ископаемых, применяют для регенерации магнетитовых суспензий.

Различия в смачиваемости компонентов водой используется при обогащении полезных ископаемых флотационным способом. Особенностью флотационного способа является возможность штучного регулирования смоченности и разделения очень тонких минеральных зёрен. Благодаря этим особенностям флотационный способ является одним из наиболее универсальных, он используется для обогащения разнообразных тонковкрапленных полезных ископаемых.

Различия в смачиваемости компонентов используется также в ряде специальных процессов обогащения гидрофобных полезных ископаемых - в масляной агломерации, масляной грануляции, полимерной (латексной) и масляной флокуляции.

Полезные ископаемые, компоненты которых имеют различия в электропроводности или имеют способность под действием тех или иных факторов приобретать разные по величине и знаку электрические заряды, могут обогащаться способом электрической сепарации. К таким полезным ископаемым относятся апатитовые, вольфрамовые, оловянные и другие руды.

Обогащение по крупности используется в тех случаях, когда полезные компоненты представлены более крупными или, наоборот, более мелкими зёрнами в сравнении с зёрнами пустой породы. В россыпях полезные компоненты находятся в виде мелких частичек, поэтому выделение крупных классов позволяет избавиться от значительной части породных примесей.

Различия в форме зёрен и коэффициенте трения позволяет отделять плоские чешуйчатые частички слюды или волокнистые агрегаты асбеста от частичек породы, которые имеют округлую форму. При движении по наклонной плоскости волокнистые и плоские частички скользят, а округлые зёрна скатываются вниз. Коэффициент трения качения всегда меньше коэффициента трения скольжения, поэтому плоские и округлые частички движутся по наклонной плоскости с разными скоростями и по разным траекториям, что создаёт условия для их разделения.

Различия в оптических свойствах компонентов используется при обогащении полезных ископаемых способом фотометрической сепарации. Этим способом осуществляется механическое рудоразделение зёрен, имеющих разный цвет и блеск (например, отделение зёрен алмазов от зёрен пустой породы).

Отличия в адгезионных и сорбционных свойствах минералов полезного компонента и пустой породы лежит в основе адгезионного и сорбционного способов обогащения золота и адгезионного обогащения алмазов (способы принадлежат к специальным способам обогащения).

Разные свойства компонентов полезного ископаемого взаимодействовать с химическими реагентами, бактериями и (или) их метаболитами обуславливает принцип действия химического и бактериального выщелачивания ряда полезных ископаемых (золото, медь, никель).

Разная растворимость минералов лежит в основе современных комплексных (совмещённых) процессов типа “добыча-обогащение” (скважинное растворение солей с дальнейшим выпариванием раствора).

Использование того или иного метода обогащения зависит от минерального состава полезных ископаемых, физических и химических свойств разделяемых компонентов.

Горную массу, подразделяют на: основные (собственно обогатительные); подготовительные и вспомогательные.

Все существующие методы обогащения основаны на различиях в физических или физико-химических свойствах отдельных компонентов полезного ископаемого. Существует, например, гравитационное , магнитное , электрическое , флотационное , бактериальное и др. способы обогащения.

Технологический эффект обогащения

Предварительное обогащение полезных ископаемых позволяет:

  • увеличить промышленные запасы минерального сырья за счёт использования месторождений бедных полезных ископаемых с низким содержанием полезных компонентов;
  • повысить продуктивность труда на горных предприятиях и снизить стоимость добываемой руды за счёт механизации горных работ и сплошной выемки полезного ископаемого вместо выборочной;
  • повысить технико-экономические показатели металлургических и химических предприятий при переработке обогащённого сырья за счёт снижения затрат топлива, электроэнергии, флюсов, химических реактивов, улучшения качества готовых продуктов и снижения потерь полезных компонентов с отходами;
  • осуществить комплексное использование полезных ископаемых, потому что предварительное обогащение позволяет извлечь из них не только основные полезные компоненты, но и сопутствующие, которые содержатся в малых количествах;
  • снизить затраты на транспортировку к потребителям продукции горного производства за счёт транспортирования более богатых продуктов, а не всего объёма добытой горной массы, содержащей полезное ископаемое;
  • выделить из минерального сырья вредные примеси, которые при дальнейшей их переработке могут ухудшать качество конечной продукции, загрязнять окружающую среду и угрожать здоровью людей.

Переработка полезных ископаемых осуществляется на обогатительных фабриках , представляющих собой сегодня мощные высокомеханизированные предприятия со сложными технологическими процессами.

Классификация процессов обогащения

Переработка полезных ископаемых на обогатительных фабриках включает ряд последовательных операций, в результате которых достигается отделение полезных компонентов от примесей. По своему назначению процессы переработки полезных ископаемых разделяют на подготовительные, основные (обогатительные) и вспомогательные (заключительные).

Подготовительные процессы

Подготовительные процессы предназначены для раскрытия или открытия зёрен полезных компонентов (минералов), входящих в состав полезного ископаемого, и деления его на классы крупности, удовлетворяющие технологическим требованиям последующих процессов обогащения. К подготовительным относят процессы дробления, измельчения, грохочения и классификации.

Дробление и измельчение

Дробление и измельчение - процесс разрушения и уменьшения размеров кусков минерального сырья (полезного ископаемого) под действием внешних механических, тепловых, электрических сил, направленных на преодоления внутренних сил сцепления, связывающих между собой частички твёрдого тела.

По физике процесса между дроблением и измельчением нет принципиальной разницы. Условно принято считать, что при дроблении получают частицы крупнее 5 мм , а при измельчении - мельче 5 мм . Размер наиболее крупных зёрен, до которого необходимо раздробить или измельчить полезное ископаемое при его подготовке к обогащению, зависит от размера включений основных компонентов, входящих в состав полезного ископаемого, и от технических возможностей оборудования, на котором предполагается проводить следующую операцию переработки раздробленного (измельчённого) продукта.

Раскрытие зёрен полезных компонентов - дробления или (и) измельчения сростков до полного освобождения зёрен полезного компонента и получения механической смеси зёрен полезного компонента и пустой породы (микста). Открытие зёрен полезных компонентов - дробление или (и) измельчения сростков до высвобождения части поверхности полезного компонента, что обеспечивает доступ к нему реагента.

Дробление проводят на специальных дробильных установках . Дроблением называется процесс разрушения твердых тел с уменьшением размеров кусков до заданной крупности, путём действия внешних сил, преодолевающих внутренное силы сцепления, связывающие между собой частицы твердого вещества. Измельчение дроблёного материала осуществляют в специальных мельницах (как правило, шаровых или стержневых).

Грохочение и классификация

Грохочение и классификация применяются с целью разделения полезного ископаемого на продукты разной крупности - классы крупности . Грохочение осуществляется рассеванием полезного ископаемого на решето и ситах с калиброванными отверстиями на мелкий (подрешётный) продукт и крупный (надрешётный). Грохочение применяется для разделения полезных ископаемых по крупности на просевных (просеивающих) поверхностях, с размерами отверстий от миллиметра до нескольких сотен миллиметров.

Грохочение осуществляется специальными машинами - грохотами .

Полезные ископаемые, компоненты которых имеют различия в электропроводности или имеют способность под действием тех или иных факторов приобретать разные по величине и знаку электрические заряды , могут обогащаться способом электрической сепарации . К таким полезным ископаемым относятся апатитовые , вольфрамовые , оловянные и другие руды.

Обогащение по крупности используется в тех случаях, когда полезные компоненты представлены более крупными или, наоборот, более мелкими зёрнами в сравнении с зёрнами пустой породы. В россыпях полезные компоненты находятся в виде мелких частичек, поэтому выделение крупных классов позволяет избавиться от значительной части породных примесей.

Различия в форме зёрен и коэффициенте трения позволяют отделять плоские чешуйчатые частички слюды или волокнистые агрегаты асбеста от частичек породы, которые имеют округлую форму. При движении по наклонной плоскости волокнистые и плоские частички скользят, а округлые зёрна скатываются вниз. Коэффициент трения качения всегда меньше коэффициента трения скольжения, поэтому плоские и округлые частички движутся по наклонной плоскости с разными скоростями и по разным траекториям, что создаёт условия для их разделения.

Различия в оптических свойствах компонентов используется при обогащении полезных ископаемых способом фотометрической сепарации . Этим способом осуществляется механическое рудоразделение зёрен, имеющих разный цвет и блеск (например, отделение зёрен алмазов от зёрен пустой породы).

Основные заключительные операции - сгущение пульпы , обезвоживание и сушка продуктов обогащения. Выбор метода обезвоживания зависит от характеристик материала, который обезвоживается, (начальной влажности, гранулометрического и минералогического составов) и требований к конечной влажности. Часто необходимой конечной влажности трудно достичь за одну стадию, поэтому на практике для некоторых продуктов обогащения используют операции обезвоживания разными способами в несколько стадий.

Отходы

Отходы - конечные продукты обогащения с малым содержанием ценных компонентов, дальнейшее извлечение которых невозможно технически и/или нецелесообразно экономически. (Данный термин равнозначен употреблявшемуся ранее термину отвальные хвосты , но не термину хвосты , которым, в отличие от отходов, называют обеднённый продукт любой отдельно взятой обогатительной операции).

Промежуточные продукты

Промежуточные продукты (промпродукты) - это механическая смесь сростков с раскрытыми зёрнами полезных компонентов и пустой породы. Промпродукты характеризуются более низким в сравнении с концентратами и более высоким в сравнении с отходами содержанием полезных компонентов.

Качество обогащения

Качество полезных ископаемых и продуктов обогащения определяется содержанием и извлечением ценного компонента, примесей, сопутствующих элементов, а также влажностью и крупностью.

Обогащение полезных ископаемых идеальное

Под идеальным обогащением полезных ископаемых (идеальным разделением) понимается процесс разделения минеральной смеси на компоненты, при котором полностью отсутствует засорение каждого продукта посторонними для него частичками. Эффективность идеального обогащения полезных ископаемых составляет 100 % по любым критериям.

Частичное обогащение полезных ископаемых

Частичное обогащение - это обогащение отдельного класса крупности полезного ископаемого, или выделение наиболее легко отделяемой части засоряющих примесей из конечного продукта с целью повышения концентрации в нём полезного компонента. Применяется, например, для снижения зольности неклассифицированного энергетического угля путём выделения и обогащения крупного класса с дальнейшим смешиванием полученного концентрата и мелкого необогащённого отсева.

Потери полезных ископаемых при обогащении

Под потерями полезного ископаемого при обогащении понимается количество пригодного для обогащения полезного компонента, которое теряется с отходами обогащения вследствие несовершенства процесса или нарушения технологического режима.

Установлены допустимые нормы взаимозасорения продуктов обогащения для разных технологических процессов, в частности, для обогащения угля. Допустимый процент потерь полезного ископаемого сбрасывается с баланса продуктов обогащения для покрытия расхождений при учёте массы влаги, выноса полезных ископаемых с дымовыми газами сушилен, механических потерь.

Граница обогащения полезных ископаемых

Граница обогащения полезных ископаемых - это наименьший и наибольший размеры частичек руды, угля, эффективно обогащаемых в обогатительной машине.

Глубина обогащения

Глубина обогащения - это нижняя граница крупности материала, который подлежит обогащению.

При обогащении угля применяются технологические схемы с границами обогащения 13; 6; 1; 0,5 и 0 мм. Соответственно выделяется необогащённый отсев крупностью 0-13 или 0-6 мм, или шлам крупностью 0-1 или 0-0,5 мм. Граница обогащения 0 мм означает, что все классы крупности подлежат обогащению.

Международные конгрессы

С 1952 года проводятся Международные конгрессы по обогащению полезных ископаемых. Ниже приведён их список .

Конгресс Год Место проведения
I 1952 Лондон
II 1953 Париж
III 1954 Гослар
IV 1955 Стокгольм
V 1960 Лондон
VI 1963 Кан
VII 1964 Нью-Йорк
VIII 1968 Ленинград
IX 1970 Прага
X 1973 Лондон
XI 1975 Кальяри
XII 1975 Сан-Паулу
XIII 1979 Варшава
XIV 1982 Торонто
XV 1985 Кан
XVI 1988 Стокгольм
XVII 1991 Дрезден
XVIII 1993 Сидней
XIX 1995