Смотреть что такое "кратность пены" в других словарях. Основы пенного тушения: пены, пенообразователи, смачиватели, их назначение, виды, состав, физико-химические свойства и область применения. Меры безопасности при работе с пенообразователями

Начнем с определения. Пена - это одна из разновидностей дисперсий. Латинское слово dispersus означает рассеянный, разбросанный; диспергированием в технике называют процесс измельчения, дробления твердых, жидких или газообразных веществ. Мы не оговорились. Дробить, а точнее, рассеивать можно не только твердые и жидкие вещества, но и газообразные. Для этого газ, например воздух, нужно равномерно распределить в виде мелких пузырьков в жидкой или твердой среде (матрице).

В зависимости от того, какое вещество (в каком агрегатном состоянии) служит матрицей, а какое-диспергируется, дисперсии будут называться по-разному. Дисперсию жидкости в жидкости называют эмульсией , твердого вещества в жидкости - суспензией . Дисперсию газа в жидкости называют пеной , газа в твердом веществе - твердой пеной . Сам газ (воздух) тоже может быть матрицей. Дисперсия в нем жидкости называется туманом , а твердого вещества - пылью (дымом) .

В дальнейшем мы и будем называть пеной систему, состоящую из газа (воздуха) и жидкости, разделяющей воздушные ячейки. Но не всякая система газ-жидкость может быть отнесена к пенам. Если газа в жидкости мало, то пузырьки находятся далеко друг от друга, они имеют форму шара и свободно перемещаются в жидкости; это еще не пена. При большом содержании газа (свыше 80-90% по объему) пузырьки плотно прилегают друг к другу, деформируются и образуют подобную сотам структуру.

Множество любопытнейших явлений, наблюдаемых при пускании мыльных пузырей, объяснил известный английский ученый и популяризатор науки Чарльз Бойс. Он связывал образование мыльного пузырька с возникновением на его поверхности «растянутой упругой перепонки». Такая перепонка не может быть создана из чистой воды, так как вода абсолютно не упруга.

Зарождение в жидкости воздушного пузырька всегда приводит к увеличению ее поверхности. При этом в поверхностном слое разыгрываются сложные физические явления, объяснением которых занимались многие видные физикохимики.

Молекулы, находящиеся в поверхностном слое чистой воды, обладают особыми свойствами по сравнению с молекулами в объеме жидкости, поскольку силы межмолекулярного взаимодействия нескомпенсированы и у молекул этого слоя оказывается избыточный запас потенциальной энергии. Поэтому образование пены в чистой воде невозможно, так как это привело бы к резкому возрастанию избыточной потенциальной энергии.

В природе любая система стремится уменьшить запас потенциальной энергии, а любой самопроизвольно протекающий процесс направлен на снижение этого запаса. В результате газовый пузырек, зародившийся в воде, будет всплывать и разрушаться. Всплывать-вследствие резкого различия плотностей газовой и жидкой фаз, а разрушаться - под действием избыточной потенциальной энергии. Простейший способ продлить жизнь пузырька - использовать более вязкую, менее текучую жидкость. И верно, пленка вязкой жидкости существует уже заметное время. Кстати, именно поэтому в мыльную воду добавляют глицерин - он увеличивает вязкость раствора. Из такого раствора пузырьки не могут всплыть и остаются в объеме жидкости.

Но тут возникает противоречие: ведь чем больше вязкость жидкости, тем более устойчивые пленки она образует, но из вязкой жидкости труднее эту пленку получить. Замечательно решают эту проблему стеклодувы. Они сначала размягчают стекло, нагревая его до высокой температуры, выдувают из него пузыри (вспомните форму обычной колбы или лампы - это просто пузырь!), а затем дают этим пузырям охладиться. При этом вязкость стекла резко (в сотни миллионов раз!) повышается и пузырь стабилизируется. Это один путь. А есть и другой, основанный на способности некоторых веществ избирательно адсорбироваться на границе раздела фаз. Эти вещества (их называют поверхностно-активными) используют как пенообразователи при приготовлении устойчивых пен. Пузырьки в такой пене разделены упругими пленками.

Когда мы растягиваем упругую пленку, то затрачиваем работу на изменение формы молекул и расстояний между ними. Потенциальная энергия поверхностного слоя при этом возрастает не столь значительно, и воздушные пузырьки в таких жидкостях могут существовать длительное время.

Пузырек воздуха в жидкости имеет почти шарообразную форму, которую он сохраняет даже будучи изолированным после выхода из пенообразующего раствора.

Рассмотрим на примере одного элементарного пузырька, как образуется пена. Представим себе, что пузырек воздуха попал в раствор, содержащий пенообразователь. На границе пузырька с жидкостью сразу начнут скапливаться молекулы пенообразователя, так что вскоре пузырек оденется своеобразной «шубой» этого вещества, состоящей из одного слоя молекул пенообразователя. Всплывая, пузырек достигает поверхности жидкости, давит на нее и растягивает. Молекулы пенообразователя из раствора устремляются к растущей поверхности, предотвращая разрыв пленки жидкости. Таким образом, при выходе из воды пузырек оказывается окруженным оболочкой уже из двух монослоев пенообразователя, между которыми находится пленка жидкости. Когда в раствор вовлекается много воздуха, образующиеся пузырьки, всплывая, создают на поверхности жидкости пенный слой, толщина которого увеличивается в процессе перемешивания жидкости и газа. В конечном счете вся жидкая фаза превращается в пену.

Напомним: когда пленки между пузырьками (перегородки) еще достаточно толсты (содержат много жидкости), пузырьки сохраняют сферическую форму. По мере того как жидкость насыщается воздушными пузырьками, толщина перегородок уменьшается и форма пузырьков начинает постепенно изменяться из сферической в многогранную. В зависимости от формы газовых пузырьков Манегольд предложил разделять пены на два класса: сферические и многогранные.

Сферические пены отличаются высоким содержанием жидкости и в силу этого - малой устойчивостью. Поэтому их относят к метастабильным (условно стабильным). В нестабильных пенах наблюдается так называемый эффект Плато: жидкая фаза из перегородок удаляется, истекая под действием силы тяжести, и происходит быстрая коалесценция (от латинского coalesce - срастаюсь, соединяюсь) - слияние соприкасающихся газовых пузырьков.

Сущность явления коалесценции можно пояснить, используя простейшие понятия о взаимосвязи между поверхностью, поверхностной энергией и объемом.

Кубик любого твердого вещества с размерами 1 х 1 х 1 см имеет поверхность 6 см 2 . Путем дробления этот кубик можно превратить в мельчайшую пыль. Суммарный объем частиц будет по-прежнему 1 см 3 , но суммарная поверхность частиц может составлять уже квадратные метры. Даже десятки и сотни квадратных метров! Очевидно, что поверхностная энергия при этом тоже увеличится (заметим, за счет совершенной работы дробления). Но общая тенденция всех процессов состоит в стремлении уменьшить запас свободной энергии. Мельчайшие частицы слипаются, мельчайшие капли и воздушные пузырьки стремятся слиться в более крупные. Чем крупнее капля или пузырек, тем меньше соотношение поверхность: объем и тем меньше запас свободной поверхностной энергии. Слияние нескольких пузырьков в один, более крупный, и называется коалесценцией . Крупный воздушный пузырь стремительно всплывает и лопается - пена разрушается.

Многогранные пены отличаются малым содержанием жидкой фазы и характеризуются высокой стабильностью . В таких пенах отдельные пузырьки сближены и разделены тонкими «растянутыми упругими перепонками». Эти пленки в силу упругости и ряда других факторов препятствуют коалесценции газовых пузырьков. По мере утончения разделительных пленок пузырьки все плотнее сближаются, прилегают друг к другу и приобретают четкую форму многогранников.

Каждый пузырек в такой пене (если все пузырьки имеют одинаковый размер) обладает формой правильного пентагонального додекаэдра, т.е. двенадцатигранника, любая сторона которого представляет собой правильный пятиугольник. Эти многогранные пузырьки разделены тончайшими пленками жидкости, которые без внешнего импульса - механического воздействия или повышения температуры - могут сохраняться в течение длительного времени и противостоять излишнему истечению жидкой фазы.

Из сказанного очевидно, что пеной является не всякая дисперсная система типа газ-жидкость, а только ячеисто-пленочная, т. е. такая, в которой отдельные пузырьки связаны друг с другом разделяющими их пленками в общий каркас. В пене газовый пузырек не может свободно перемещаться ни в вертикальной, ни в горизонтальной плоскости. Он как бы «зажат» другими, прилегающими к нему пузырьками. Такая плотная упаковка достигается лишь при определенном соотношении объемов жидкой и газовой фаз. Это соотношение может быть найдено, если применить к пенам теорию упаковки шарообразных тел (в нашем случае-это газовые пузырьки). Для того чтобы образовалась сферическая пена, объем раствора пенообразователя нужно увеличить, насыщая его воздухом, в 3,8 раза по сравнению с первоначальным.

Если воздуха в растворе содержится меньше, то такую систему уже нельзя отнести к пенам. При большем насыщении пены воздухом пузырьки теряют сферическую форму и превращаются в многогранники, а разделяющие их пленки приобретают одинаковую толщину во всем объеме пены. Получается пространственная конструкция, в разрезе похожая на не раз виденные нами пчелиные соты. При получении пены такая конструкция возникает самопроизвольно; в ней на каждом ребре многогранника сходятся три тонкие пленки, образуя угол в 120°. Эта пена характеризуется минимальной поверхностной энергией, а следовательно, она наиболее устойчива. В такой системе броуновское движение ограничено, она приобретает некоторые свойства твердого тела (например, пена обладает определенной упругостью) и в то же время сохраняет ряд свойств, присущих компонентам пены: сжимается, как газ, а раствор в пленках имеет свойства обычной жидкости. Форму, подобную пятиугольным додекаэдрам, пузырьки пены приобретают, если их объемы (размеры) одинаковы. В большинстве пен отдельные пузырьки имеют разный объем, и, следовательно, их форма не будет идеальной, наиболее устойчивой. Такая пена быстрее разрушается.

Получение пены с заданным комплексом свойств - чрезвычайно важная прикладная проблема. Для оценки свойств пены, а значит, и ее пригодности для тех или иных целей существует множество общих и специальных характеристик. Основные показатели - кратность пены, ее дисперсность и устойчивость во времени. Во многих случаях важны ее структурно-механические свойства, а также теплопроводность, электропроводность, способность длительное время удерживать в массе твердые частицы, устойчивость при изменении температуры, облучении и даже оптические свойства пеномассы.

Чаще других пользуются характеристикой «кратность пены» , например, при оценке синтетических моющих средств, хотя однозначной связи между пенообразуюшей способностью и моющим действием порошков и жидкостей не обнаружено. Кратность пены Кр -это отношение объема пены Vп к объему раствора Vж; таким образом, эта характеристика показывает, сколько объемов пены можно получить из одного объема жидкости.

Определение кратности и устойчивости пены низкой и средней кратности осуществляется согласно ГОСТ Р 50588- 93. Пункт 5.2. В зависимости от величины кратности, получаемую из пенообразователей пену подразделяют на:
- пену низкой кратности (не более 20);
- пену средней кратности (от 20 до 200);
- пену высокой кратности (более 200).

Дисперсность пены характеризует средний размер воздушных пузырьков; чем меньше пузырьки, тем более дисперсна пена, при большом размере ячеек пену называют грубодисперсной. От дисперсности пены зависит скорость многих технологических процессов в микробиологической и химической промышленности, эффективность тушения пожаров, качество вспененной пластмассы, вкус мороженого и многих сортов конфет. Поэтому определение дисперсности является обязательным почти для всех производств, использующих пену.


НАЗНАЧЕНИЕ ПЕНООБРАЗОВАТЕЛЯ ПРИ ПОЛУЧЕНИИ ПЕНОБЕТОНА

Способ изготовления пенобетонов основан на особых свойствах пены, получаемой из специальных веществ, носящих название пенообразователей. Назначением пены является образование ячеистого скелета, который служит основанием для получения затем цементного скелета, такого же ячеистого строения, как и сама пена.

Так как пена и цементный раствор смешиваются совместно в мешалках, а цементный раствор затвердевает не сразу, то пена должна обладать особыми свойствами. Во-первых, пена должна быть достаточно упругой, чтобы не быть раздавленной тяжелым цементным раствором и, во-вторых, достаточно устойчивой против химического воздействия цемента.

Выбор пенообразователя в известной мере обусловливает как технологию производства пенобетона, так и технические и эксплуатационные характеристики получаемой продукции. Различные свойства пены по-разному влияют на структуру образования, формирования и твердения пенобетонной массы, отражаются на последующие эксплуатационные характеристики зданий и сооружений, построенных из пенобетона. Для оценки качества пенообразующих растворов и приготовленных из них пен, в разных отраслях промышленности применяют разные критерии. Это могут быть и абсолютный объем получаемой пены с единицы пенообразователя (очистка котловых вод), и время «живучести» пены (кулинария), и биоцидность (фармакология), и несущая способность пены (флотация), и вязкость пены (пылеподавление), и стойкость к тепловому воздействию (пожаротушение), и смачивающая способность (очистка поверхностей), и время сохранения эффективного пенообразования (аэрозольные пены) и т.д.

До настоящего времени нет универсального подхода к оценке эффективности того или иного пенообразователя. Для каждого конкретного случая применимости важны свои критерии оценки, свои, порой взаимоисключающие, характеристики.

Так для производства пенобетонов наиболее важны следующие параметры пены:

1) кратность – отношение первоначального объема пены к объему раствора пенообразователя затраченного на её получение;

2) стабильность – время распада единицы объема пены за единицу времени;

3) дисперсность – величина, характеризующая средний размер пузырьков и их распределение по объему пены;

4) плотность – соотношение жидкой и газовой фаз;

5) структурно механические свойства – способность определенное время сохранять первоначальную форму;

6) несущая способность – способность пузырьков пены без разрушения удерживать на своей поверхности определенное количество иных веществ;

7) влияние на изменение пластической вязкости ячеистобетонной композиции;

8) гидрофобизация или гидрофолизация внутреннего порового пространства ячеистого бетона;

9) влияние компонентов пенообразователя на гидратацию цемента;

10) совместимость пены с другими компонентами, применяемыми для изготовления пенобетона

(пластификаторы, ускорители, газовыделяющие, и гидрофобизирующие добавки и т.д.);

Знание и понимание механизма пенообразования, влияния отдельных факторов на характеристики пены обуславливают и степень успешности производства пенобетона в целом. А пренебрежение основополагающими и фундаментальными закономерностями в этой области (или простое незнание) порождают или плохое качество производимого пенобетона или нестабильность его характеристик.

ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К ПЕНООБРАЗОВАТЕЛЯМ ДЛЯ ПЕНОБЕТОНА

Любой пенообразователь, существующий на рынке производства пенобетона должен удовлетворять следующим требованиям:

- технико-экономические

Расход пенообразователя в денежном выражении не должен превышать 3$ на 1 кубический метр производимого пенобетона. При превышении этого показателя его применение становится экономически нецелесообразным из-за большого влияния на себестоимость продукции. Причем, является очевидным, что более дорогие пенообразователи не увеличат качество продукции в соответствии с увеличенной стоимостью. Этот критерий сразу отсекает все импортные пенообразователи и оставляет Российские.

- постоянство свойств, независимо от партии

Пенообразователь должен иметь одинаковые характеристики, независимо от партии и времени выпуска. В противном случае понадобится постоянная перенастройка технологического процесса производства или, если ее не делать, продукция будет получаться пониженного качества.

- достаточный срок хранения

Пенообразователь должен иметь срок хранения не меньше 1 года. Если срок хранения меньше, то придется покупать пенообразователь маленькими партиями и постоянно докупать новые. Это может быть проблематичным, в связи с большим временем доставки по железной дороге и удаленностью некоторых производств. Также, при окончании строительного сезона и значительном снижении объема производства, невостребованный пенообразователь может вообще испортится до следующего сезона.

- малый расход

Расход пенообразователя не должен превышать 1,5 литров на 1 куб.м. производимого пенобетона. Это необходимо по двум причинам. Первая: для большего количества продукции получаемой из одной загрузки пеногенератора. Вторая: для меньшего влияния на процесс твердения пенобетона. Как известно, при большом количестве пенообразователя использованного для приготовления пенобетона, может увеличиваться время затвердевания пенобетона, понижаться его прочность, увеличиваться усадка.

- простота приготовления

Пенообразователь не должен быть многокомпонентным. Увеличение количества составляющих усложняет процесс приготовления рабочего раствора пенообразователя и снижает точность дозирования составляющих. Однокомпонентные пенообразователи имеют преимущества, особенно, при использовании в строительных условиях. А во избежание засорения трубопроводов и накопления осадка в рабочих емкостях, необходимо, чтобы пенообразователь был хорошо растворим в воде.

- высокая кратность и стойкость

Кратность пенообразователя и стойкость пены - это основные физические свойства технической пены, которые характеризуют качество пенообразователя. Они зависят от вида пенообразователя, устройства приготовления пены, которые в значительной мере влияют на физико-механические свойства поризованного бетона. Кратность пенообразователя, должна быть не менее 10. Это необходимо для уменьшения отрицательного действия пенообразователей на гидратацию вяжущего. Кратность пенообразователя определяется по простой формуле: надо объем полученной пены разделить на объем исходного пенообразователя. Зачастую пенообразователи поставляются в концентрированном виде и требуют разбавления водой. Тогда кратность определяется: объем полученной пены деленный на объем исходного водного раствора. На прочность пенобетона оказывает влияние количество вводимой в поризуемую смесь воды с пеной, которая приводит к дополнительному образованию капиллярных пор. Уменьшение В/Т (водо-твердое соотношение см. словарь) в поризуемом растворе изменяет значение С, что приводит к увеличению плотности получаемого пенобетона. Поэтому, в технологии пенобетона некоторые производственники используют относительно высокое значение В/Т. За счет такого технологического приема, увеличивая значение С, представляется возможным получить пенобетон меньшей плотности, уменьшая отрицательное воздействие пенообразователя на гидратацию вяжущего. Использование пен высокой кратности (так называемых условно "сухих пен") приводит к перераспределению воды из твердеющего раствора в межпленочные слои пузырьков пены. Такой эффект наблюдается при использовании определенных видов пенообразователей и пен повышенной вязкости.

- соответствие санитарно-гигиеническим нормам

Пенообразователи должны быть нетоксичны, невзрывоопасны и, согласно классификации по ГОСТ 12.1.007-76, относится к 3, 4-ому классу малоопасных веществ, и отвечать санитарно- и радиационно-гигиеническим требованиям. Биоразлагаемость разрабатываемых ПО должна удовлетворять требованиям предъявляемых при использовании ПАВ (Поверхностно активных веществ) в производстве строительных материалов.

- достаточная стойкость пены в растворе

Это один из важнейших показателей качества технической пены. Этот технологический параметр характеризуется коэффициентом стойкости пены в цементном тесте при лабораторных исследованиях, а в производственных условиях, коэффициентом использования пены. Значение этих коэффициентов отображает не только совместимость технической пены со средой твердеющего раствора, но и показывает объемную долю использования пены в приготовлении поризованного раствора. В лабораторных исследованиях определение коэффициента стойкости пены производится вручную при смешивании в течение 1 минуты в равных объемах (1 л) цементного теста (В/Ц=0,4) и пены, с последующим измерением полученного объема поризованного теста. Коэффициент стойкости пены в цементном тесте рассчитывают как результат среднего арифметического трех замеров. Проще говоря, берется 1 литр пены и 1 литр цемента. В течение 1 минуты они перемешиваются, и после этого измеряется объем полученной пеномассы. Объем полученной пеномассы делим на 2 и получаем некое число, назовем его С.

Получаемую техническую пену можно считать удовлетворительной, если значение С от 0,8 до 0,85, а качественной: С = 0,95. Например, на основе пенообразователя Ареком можно приготовить пену с С = 0,96. Этот показатель стойкости пены связан с плотностью и прочностью получаемого пенобетона. Чем выше коэффициент стойкости пены, тем меньший объем пены необходим для получения пенобетона требуемой плотности и, соответственно, необходим меньший расход пенообразователя. Пенообразователь, как и любая добавка, в запредельном количестве на начальной стадии замедляет и может совсем приостановить твердение вяжущего. Количество пенообразователя, перешедшего в жидкую систему твердеющего вяжущего, зависит от С. Количество пенообразователя в жидкой фазе вяжущего можно определить через С. Поэтому необходимо использовать пены более высокой кратности, уменьшая объем пенообразователя, вводимого в бетонную смесь, но, сохраняя высокое значение С. Эти технологические параметры пены находятся во взаимосвязи и в противоречии. Поэтому, для каждого состава пенообразователя и технической пены необходимо определять приоритетное их влияние на технологические и физико-механические свойства пенобетона.

- стойкость смеси во времени

Стойкость поризованной смеси во времени характеризуется осадкой пенобетонной смеси. Можно предположить, что влияние на процесс осаждения оказывает изменение рН среды твердеющего бетона и перераспределение ПАВ (поверхностно активное вещество - пенообразователь) в дисперсной системе. При недостаточной структурной прочности межпоровых перегородок (результат действия ПАВ) происходит их прорыв и слияние. Такие изменения поризованной смеси во времени измеряют высотой осадки поризованной смеси к начальной ее высоте. Чем меньше осадка пенобетонной смеси, тем качественней пенообразователь и приготовленная техническая пена.

Основные критерии оценки свойств пенообразователей: концентрация пенообразователя при приготовлении стойкой пены; кратность пены и коэффициент стойкости пены в вяжущем растворе. Эти показатели необходимо использовать для первоначальной оценки качества пенообразователя.

По установившейся традиции в конце книги или журнальной статьи помещают список литературы, в которой можно найти дополнительные сведения по тем или иным разделам темы. В этом отношении наша задача решается предельно просто. Мы назовем только две, но очень обстоятельные книги: В. К. Тихомиров. «Пены. Теория и практика их получения и разрушения» (М., Химия, 1983). Небольшая книга содержит информацию по всем вопросам, перечисленным в названии, обширный список литературы, включающий более 650 оригинальных работ, монографий, патентов. Вторая «молодая» книга принадлежит перу докторов химических наук П. М. Круглякову и Ю. Г. Ровину - это «Физикохимия черных углеводородных пленок» (М., «Наука», 1978).

Применение пены в качестве огнетушащего средства произвело фурор в области пожаротушения, а в частности при тушении легковоспламеняемых и горючих жидкостей. Хотя , этот вид огнетушащего средства не увенчались успехом, со временем, все поняли, на сколько эффективнее это средство по сравнению с другими.

Что такое пожарная пена

Если объяснять понятным языком то пожарная пена – это, по сути, обычные «мыльные» пузыри, которые получаются из специального пожарного пенообразователя при его разбавлении водой и последующем прохождении через пеногенераторы.

Как Вам уже стало понятно, основной составляющей пожарной пены является пожарный пенообразователь, который за счет поверхностно-активных веществ (ПАВ) имеет способность пениться в значительном количестве при малой концентрации.

ПАВ – за частую, являют собой органические или синтетические белковые соединения которые растворяются в воде.

Классификация пенообразователей и пен

В связи с разнообразностью легковоспламеняющихся и горючих жидкостей возникла необходимость разработки и усовершенствования пожарного пенообразователя для разнообразных целей пожаротушения.

Таким образом на сегодняшний день пенообразователи и пены классифицируются по назначению, структуре по химической природе поверхностно-активного вещества и по способу
образования:

по природе основного поверхностно-активного вещества:

  • протеиновые (белковые);
  • синтетические углеводородные;
  • фторсодержащие.

по способу образования:

  • химические (конденсационные);
  • воздушно-механические;
  • барботажные;
  • струйные.

по назначению:

Пены классифицируются следующим образом:

по структуре :

  • высокодисперсные;
  • грубодисперсные;

по кратности:

  • низкократные, пеноэмульсии;
  • средней кратности;
  • высокократные.

ХАРАКТЕРИСТИКА НАИБОЛЕЕ РАСПРОСТРАНЁННЫХ ПЕНООБРАЗОВАТЕЛЕЙ

ПО-1 Водный раствор нейтрализованного керосинового кон­такта 84±3%, костный клей для стойкости пены 5 ± 1 % синтетический этиловый спирт или концентрированный этиленгликоль 11 ± 1 %. Температура замерзания не пре­вышает -8 °С. Является основным пенообразующим средством для получения воздушно-механической пены любой кратности.

При тушении нефтей и нефтепродуктов концентрация водного раствора ПО-1 принимается 6%. При тушении других веществ и материалов используют растворы с концентрацией 2 – 6 %.

ПО-3А Водный раствор смеси натриевых солей вторичных ал­килсульфатов. Содержит 26±1 % активного вещества. Температура замерзания не выше – 3°С. При примене­нии разбавляют водой в пропорции 1: 1 с использо­ванием дозирующей аппаратуры, рассчитанной на пено­образователь ПО-1. Для получения пены применяют водный раствор с концентрацией 4 – 6 %.
ПО-6К Изготовляют из кислого гудрона при сульфировании гидроочищенного керосина. Содержит 32 % активного вещества. Температура замерзания не выше -3°С. Для получения пены при тушении нефтепродуктов используют водный раствор с концентрацией 6 %. В других случаях концентрация водного раствора может быть меньше.
«Сампо» Состоит из синтетического поверхностно-активного вещества (20%), стабилизатора (15%), антифризной добавки (10%) и вещества, снижающего коррозионное действие состава (0,1 %). Температура застывания – 10°С. Для получения пены используют водный раствор с концентрацией 6 %. Применяют при тушении нефти, неполярных нефтепродуктов, резинотехнических изделий древесины, волокнистых материалов, в стационарны системах пожаротушения и для защиты технологических установок.

Влияние состава пенообразователя
 на свойства пены

Основные показатели, которые необходимо учитывать пожарным во время пожаротушения являются: назначение пенообразователя (общее, целевое или пленкообразующее) и кратность.

Направленность (назначение) пенообразователя

Пенообразователи целевого назначения способны вырабатывать пену, которая хорошо сохраняется на поверхности очага возгорания (бензина, нефти), то есть, может длительное время не разрушаться на открытом воздухе. Такие свойства пожарной пены создаются за счет того, что в состав пенообразователя входят несколько компонентов.

Также пенообразователи целевого назначения необходимы для тушения легковоспламеняющихся органических жидкостей растворимых в воде, например, спирта. За счет введение в состав пенообразователя некоторых полимеров, которые в свою очередь в последствие отделяют спирт от пены толстой полимерной пленкой.

К пенообразователям целевого назначения также можно отнести морозоустойчивые пенообразователи, соответственно они используются в регионах или климатических условиях с постоянно низкими температурами.

Универсальные и многоцелевые пенообразователи говорят сами за себя. По этому этот вид пенообразователя самый распространенные среди пожарных.

Пленкообразующие пенообразователи это особый вид пенообразователя который применяют при тушении возгораний углеводородного топлива (авиационное топливо, горючие газы и др.), а также во время подслойного тушения пожаров в резервуарах. За счет образования пленки на поверхности горючего он предотвращает повторное воспламенение.

Следующая важная характеристика пожарной пены это ее кратность.

Кратностью пены (К) называется отношение объема пены (V п) к объему жидкости в пене (V ж):

Так как пена это пузыри надутые воздухом, что является неустойчивой дисперсной системой, в которой, с момента образования, начинает протекать процесс переноса воздуха от пузырька к пузырьку в результате общее количество пузырьков и объем пены уменьшается, а также выделяется вода.

В зависимости от величины кратности пены разделяют на четыре группы:

  • пеноэмульсии, вода с смачивателем К<3
  • низкократные пены, 3 < К< 20;
  • пены средней кратности, 20 < К< 200;
  • пены высокой кратности, К > 200.

В пожаротушении используются все виды кратности пожарной пены. Получить различную кратность пены можно за счет разнообразных приборов и пеногенерирующих устройств (установок):

  • пеноэмульсии - соударением свободных струй раствора, 
для тушения пожаров нефти в амбарах;
  • низкократные пены - в пеногенераторах, в которых эжектируемый
воздух перемешивается с раствором пенообразователя – стволы СВП. ;


  • пена средней кратности - на металлических сетках эжекционных
 пеногенераторов – ;


  • пена высокой кратности - в генераторах с перфорированной поверхностью тонких металлических листов или на специальном оборудовании,
в результате принудительного наддува воздуха в пеногенератор от вентилятора – .


Тема Назначение виды и устройство оборудования для получения воздушно-механической пены

Вид занятия : классно-групповое

Отводимое время : 1 учебный час.

Литература: учебник «Пожарная техника»

Развернутый план занятий.

Пенообразователи общего назначения изготовляются на основе дешевого и доступного сырья. Используются для получения пены и растворов смачивателей.

Предназначены для тушения пожаров нефтепродуктов, дерева, ткани, бумаги, торфа, хлопка, каучука, пластмасс и т.д. Служат для получения пены низкой, средней кратности и высокой.

К ним относятся:

  • ТЭАС – А

Преобразователи целевого назначения

Пенообразователи целевого назначения используются для получения пены, при тушении пожаров нефтепродуктов и различных классов горючих жидкостей наиболее пожароопасных объектов, а также для применения с морской водой, при низкой температуре и других особых условиях. Некоторые из них изготавливаются на основе дефицитного дорогостоящего сырья.

К ним относятся:

    Пленкообразующий

  • Универсальный

Физико-химические и огнетушащие свойства пен.

Огнетушащие пены разделяются на химическую и воздушно - механическую.

Химическая пена (кратность до 6)получают в результате химической реакции между кислой и щелочной частями:

Fe2(S04)3+6NaHC03-)-3Na2S04+2Fe(OH)3+6C02

H 2 S 04+2 NaHC 03-> Na 2 S 04+2 C 02+2 H 20

Воздушно - механическая пена получается путем механического перемещения трех компонентов: воды, пенообразователя и воздуха.

Согласно ГОСТ 12.1.114-82 ВМП подразделяется на три вида:

    ВМП низкой кратности К<20 (для расчетов К=10) ВМП

    средней кратности 20^К^200 (для расчетов К=100)

    ВМП высокой кратности К>200 (для расчетов К=1000)

Физико-химические и огнетушащие свойства пен и область их применения .

Огнетушащие пены представляют собой совокупность пузырьков ,

состоящих из

жидкостной оболочки, заполненной воздухом или газами, т.е. пена - это

концентрированная эмульсия газа и в жидкости.

Химическая пена состоит на 80% С02 (углекислого газа) , 19,7% водного раствора и 0,3% пенообразующих веществ.

ВМП состоит из 83-99,6% воздуха и 0,4-17% водного раствора ПО.

Основными свойствами пен независимо от способа их получения являются следующие:

1. Кратность пены - это отношение объема пены к объему пенообразующей жидкости. Кратность зависит от типа, качества и концентрации ПО в воде, от конструкции пенного прибора, от напора перед распылителем и от температуры подсасываемого воздуха.

2. Стойкость пены - это способность противостоять разрушению в течении определенного времени. Стойкость пены - это время в течении которого пена разрушается на 50% первоначального объема. Стойкость зависит: от вида ПО, свойств и температуры веществ, с которыми она взаимодействует, способа подачи, высоты пенного слоя. т=3,8-18мин (САМПО - несколько часов)

3. Высокая теплоемкость - пена, разрушаясь, охлаждает горящие вещества (строительные конструкции, ЛВЖ и ГЖ) за счет имеющегося в ее структуре водного раствора пенообразователя.

4. Небольшая плотность 4-170 кг/м 3 . Плотность зависит от кратности пены, Пена плавает на поверхности жидкостей, не создает чрезмерной нагрузки на покрытия, исключает потерю устойчивости судна при тушении пожаров.

5. Низкая теплопроводность - она близка к теплопроводности неподвижных газов. Это позволяет использовать пену в качестве теплоизоляционного экрана от действия лучистой энергии.

6.Изолирующая способность - при тушении пеной, слой пены препятствует проникновению паров в зону горения и тепла из зоны горения к поверхности вещества.

7. Вязкост ь - способность пены к растеканию.

8. Дисперстность - степень измельчения т.е. размеры пузырьков. С увеличением дисперстности пены, растет время ее существования, вязкость и парогазонепроницаемость.

Способ получения пен и предназначение для пожаротушения:

    Пена низкой кратности – стволы СВЭ; СВПЭ; ОРТ-50 с насадкой – тушение хлопка и родственных веществ, так же применяется для тушения резина образных изделий и паралона.

    Пена средней кратности – ГПС-600; ГПС-800; ГПС – 2000 – тушение ЛВЖ.

    Пена высокой кратности - получается ТОЛЬКО при помощи пожарного дымососа. Тушение объемных пожаров (подвалы). В этой пене можно дышать .

Схемы боевого развертывания с подачей ВМП



ПЕНООБРАЗОВАТЕЛИ
ДЛЯ ТУШЕНИЯ ПОЖАРОВ

О бщие технические требования
и методы испытаний

Москва

Стандартинформ

2012

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

1 РАЗРАБОТАН Государственным образовательным бюджетным учреждением высшего профессионального образования «Академия государственной противопожарной службы» МЧС России (Академия ГПС МЧС России) и Федеральным государственным бюджетным учреждением «Всероссийский ордена «Знак Почета» научно-исследовательский институт противопожарной обороны МЧС России» (ФГБУ ВНИИПО МЧС России)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 274 «Пожарная безопасность»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 14 мая 2012 г. № 66-ст

5 ПЕРЕИЗДАНИЕ. Январь 2013 г.

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок - в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

ГОСТ Р 50588-2012

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕНООБРАЗОВАТЕЛИ ДЛЯ ТУШЕНИЯ ПОЖАРОВ

Общие технические требования и методы испытаний

Foaming agents for fire extinguishing. General technical requirements and test methods

Дата введения - 2012-09-01

1 Область применения

Настоящий стандарт распространяется на пенообразователи для приготовления водных растворов, предназначенных для получения с помощью специальной аппаратуры воздушно-механической пены для тушения пожаров, и пенообразователи для приготовления водных растворов, предназначенных для тушения пожаров, в качестве смачивателей (далее - смачиватели).

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

Таблица 1 - Показатели качества смачивателей и пенообразователей типов WA и S при использовании дистиллированной и питьевой воды

Значение для

Метод испытания

смачивателей типа WA

пенообразователей типа S

1 Внешний вид

× с -1 , не более

100

100

4 Динамическая вязкость, Па × с, не более

Или смачиватель

(смачивателя)

6,5 - 8,5

Минус 3

Минус 3

Низкая, не более

20

Средняя, не менее

Не нормируется

60

Высокая, не менее

То же

200

Не нормируется

× с) (стендовая методика)

Не нормируется

250

Пеной средней кратности при интенсивности (0,032 ± 0,002), дм 3 /(м 2 × с)

То же

300

32

32

45

45

Таблица 2 - Показатели качества смачивателей и пенообразователей типов WA и S при использовании жесткой и морской воды

Наименование показателя

Значение для

Метод испытания

смачивателей типа WA

пенообразователей типа S

1 Внешний вид

Однородная жидкость без осадка и расслоения

2 Плотность при 20 °С, кг/см 3

Должна быть указана в нормативном или техническом документе на конкретный пенообразователь или смачиватель

3 Кинематическая вязкость при 20 °С, мм 2 × с -1 , не более

100

100

4 Динамическая вязкость, Па × с, не более

Должна быть указана в нормативном или техническом документе на конкретный пенообразователь или смачиватель

6,5 - 8,5

6 Температура застывания, °С, не выше

Минус 3

Минус 3

7 Кратность пены из рабочего раствора:

Низкая, не более

20

Средняя, не менее

Не нормируется

60

Высокая, не менее

То же

200

8 Показатель устойчивости пены низкой, средней и высокой кратности

Не нормируется

Должен быть указан в нормативном или техническом документе на конкретный пенообразователь

9 Время тушения н-гептана при установленной интенсивности подачи рабочего раствора, с, не более:

Пеной средней кратности при интенсивности (0,032 ± 0,002) дм 3 /(м 2 × с) (стендовая методика)

Не нормируется

250

Пеной средней кратности при интенсивности (0,032 ± 0,002) дм 3 /(м 2 × с)

То же

300

10 Поверхностное натяжение рабочего раствора, мН/м, не более

Или смачиватель

11 Показатель смачивающей способности, с, не более

Должен быть указан в нормативном или техническом документе на конкретный пенообразователь или смачиватель

Таблица 3 - Показатели качества пенообразователей типов S/AR; AFFF/AR, FP/AR, FFFP/AR, AFFF, AFFF/AR-LV, FP, FFFP при использовании дистиллированной и питьевой воды

Наименование показателя

Метод испытания

типа S/AR

типов AFFF/AR, FP/AR, FFFP/AR

1 Внешний вид

Однородная жидкость без осадка и расслоения

2 Плотность при 20 °С, кг/см 3

Должна быть указана в нормативном или техническом документе на конкретный пенообразователь

3 Кинематическая вязкость при 20 °С, мм 2 × с -1 , не более

Должна быть указана в нормативном или техническом документе на конкретный пенообразователь

100

4 Динамическая вязкость, Па × с, не более

2,5

2,5

Должна быть указана в нормативном или техническом документе на конкретный пенообразователь

5 Водородный показатель рН пенообразователя

6,5 - 8,5

6 Температура застывания, °С, не выше

Минус 3

Минус 15

Минус 15

7 Кратность пены из рабочего раствора:

Низкая, не более

20

20

20

Средняя, не менее

60 *

40 *

40 *

Высокая, не менее

200 *

200 *

200 *

8 Показатель устойчивости пены низкой, средней и высокой кратности

Должен быть указан в нормативном или техническом документе на конкретный пенообразователь

9 Время тушения н-гептана при установленной интенсивности подачи рабочего раствора, с, не более:

× с)

120

90

90

Пеной средней кратности при интенсивности (0,032 ± 0,002) дм 3 /(м 2 × с)

120 *

100 *

100 *

× с)

120 *

90 *

90 *

10 Время повторного воспламенения модельного очага после тушения пеной, с, не менее::

Низкой кратности

300

700

450

Средней кратности

Должно быть указано в нормативном или техническом документе на конкретный пенообразователь

400 *

400 *

32

Должно быть указано в нормативном или техническом документе на конкретный пенообразователь

Не нормируется

Должно быть указано в нормативном или техническом документе на конкретный пенообразователь

*

Таблица 4 - Показатели качества пенообразователей типов S/AR, AFFF/AR, FP/AR, FFFP/AR, AFFF, AFFF/AR-LV, FP, FFFP при использовании жесткой и морской воды

Значение для пенообразователей

Метод испытания

типа S/AR

типов AFFF/AR, FP/AR, FFFP/AR

типов AFFF, AFFF/AR-LV, FP, FFFP

1 Внешний вид

Однородная жидкость без осадка и расслоения

2 Плотность при 20 °С, кг/см 3

Должна быть указана в нормативном или техническом документе на конкретный пенообразователь

3 Кинематическая вязкость при 20 °С, мм 2 × с -1 , не более

Должна быть указана в нормативном или техническом документе на конкретный пенообразователь

100

4 Динамическая вязкость, Па × с, не более

2,5

2,5

Должна быть указана в нормативном или техническом документе на конкретный пенообразователь

5 Водородный показатель рН пенообразователя

6,5 - 8,5

6 Температура застывания, °С, не выше

Минус 3

Минус 15

Минус 15

7 Кратность пены из рабочего раствора:

Низкая, не более

20

20

20

Средняя, не менее

60 *

40 *

40 *

Высокая, не менее

200 *

200 *

200 *

8 Показатель устойчивости пены низкой, средней и высокой кратности

Должен быть указан в нормативном или техническом документе на конкретный пенообразователь

9 Время тушения н-гептана при установленной интенсивности подачи рабочего раствора, с, не более:

Пеной низкой кратности при интенсивности (0,059 ± 0,002) дм 3 /(м 2 × с)

Должно быть указано в нормативном или техническом документе на конкретный пенообразователь

120

120

Пеной средней кратности при интенсивности (0,032 ± 0,002) дм 3 /(м 2 × с)

120 *

120 *

120 *

Пеной высокой кратности при интенсивности (0,059 ± 0,002) дм 3 /(м 2 × с)

120 *

120 *

120 *

10 Время повторного воспламенения модельного очага после тушения пеной, с, не менее:

Низкой кратности

Должно быть указано в нормативном или техническом документе на конкретный пенообразователь

450

330

Средней кратности

То же

330 *

330 *

11 Поверхностное натяжение рабочего раствора, мН/м, не более

Должно быть указано в нормативном или техническом документе на конкретный пенообразователь

12 Межфазное натяжение рабочего раствора на границе с гептаном, мН/м, не менее

Не нормируется

Должно быть указано в нормативном или техническом документе на конкретный пенообразователь

* Для пенообразователей, образующих пену указанной кратности.

Воду питьевую с удельной электропроводностью (0,10 ± 0,05) См/м;

Воду жесткую (модель жесткой воды - согласно приложению );

Воду морскую (модель морской воды - согласно приложению ).

5.1.2 Периодический контроль пенообразователей и смачивателей следует проводить по показателям 1, 5, 7, 8, 10, 11 таблиц - .

Внешний вид пенообразователя определяют визуально в цилиндрах по ГОСТ 1770 из бесцветного стекла вместимостью 250 см 3 в проходящем рассеянном свете при температуре (20 ± 2) °С.

В два одинаковых цилиндра наливают по 200 см 3 пенообразователя и выдерживают их в течение (12 ± 2) ч при температуре (3 ± 2) °С, а затем при температуре (60 ± 2) °С в течение (12 ± 2) ч. При этом не должны наблюдаться расслоения и выпадение осадка, видимого невооруженным глазом. Для фторпротеиновых пенообразователей допускается осадок не более 0,25 % объема.

5.3.1 Определение кратности и показателя устойчивости пены низкой и средней кратности

Сущность метода заключается в измерении массы до и после заполнения пеной емкости для сбора пены с последующим вычислением кратности пены и определением показателя ее устойчивости.

5.3.1.1 Применяемое оборудование, средства измерений и растворы

Для определения кратности и показателя устойчивости пены низкой и средней кратности используют установку (см. рисунок ), в комплект которой входят:

Генератор пены средней кратности ГПС-100 (см. рисунок ) с распылителем диаметром 8,1 мм, позволяющим обеспечить объемный расход раствора (1,0 ± 0,1) дм 3 /с при давлении на стволе (0,60 ± 0,01) МПа или пожарный ствол для пены низкой кратности с распылителем (см. рисунок ), позволяющий обеспечить объемный расход раствора (0,166 ± 0,001) дм 3 /с при давлении на стволе (0,58 ± 0,02) МПа;

Насос водяной, обеспечивающий объемный расход раствора 0,16 - 1,10 дм 3 /с при давлении на стволе (0,58 ± 0,03) МПа;

Емкость металлическая цилиндрическая для сбора пены, вместимостью (200 ± 1) дм 3 , массой не более 12 кг, с отверстием диаметром (40 ± 5) мм по центру дна емкости для истечения рабочего раствора. Соотношение высоты емкости h к ее диаметру d равно 1,5;

Весы с пределом измерения не более 50 кг и погрешностью измерений не более 0,05 кг;

Емкость мерная для приготовления рабочего раствора пенообразователя, вместимостью 100 - 110 дм 3 ;

5.3.1.2 Подготовка к испытанию

Готовят 100 дм 3 рабочего раствора испытуемого пенообразователя. Проверяют работоспособность насосной установки. Измеряют массу пустой емкости для сбора пены.

Перед каждым определением измеряют температуру рабочего раствора пенообразователя, которая должна составлять (20 ± 2) °С.

1 - генератор пены или ствол низкой кратности; 2 - напорный рукав; 3, 4 - патрубок с манометром;
5 - водяной насос; 6 - всасывающий рукав; 7 - емкость с рабочим раствором пенообразователя;
8 - емкость для сбора пены; 9 - весы

Рисунок 1 - Схема установки для определения кратности и показателя устойчивости
пены

1 - корпус; 2 - пакет сеток; 3 - распылитель

Рисунок 2 - Генератор пены средней кратности ГПС-100

1 - труба; 2 - успокоитель; 3 - муфта; 4 , 7 - штуцер; 5 - распылитель; 6 - смеситель;
8 - переходник; 9 - напорная
головка

Рисунок 3 - Пожарный ствол пены низкой кратности

5.3.1.3 Проведение испытания

Для определения кратности пены средней кратности приготовленный рабочий раствор подают под давлением (0,60 ± 0,01) МПа в напорный рукав, на выходе которого установлен генератор ГПС-100. Отверстие на дне емкости закрывают. После получения устойчивой струи пены наполняют пеной емкость для сбора пены и взвешивают ее. При этом заполнение всего объема емкости должно быть равномерным, без образования пустот. Определяют массу пены как разность масс заполненной и пустой емкостей. Отверстие на дне емкости открывают для истечения раствора.

Для получения пены низкой кратности рабочий раствор подают на ствол низкой кратности под давлением (0,60 ± 0,01) МПа. Время заполнения емкости - (25 ± 5) с. Линейкой с пределом измерения 100 см определяют высоту пены Н с погрешностью до 1 см и вычисляют объем пены низкой кратности V, дм 3 , по формуле

(1)

где Н - высота пены, см;

d - диаметр емкости для сбора пены, см.

5.3.1.4 Обработка результатов

Кратность пены K вычисляют по формуле

где V п - объем пены, дм 3 ;

V p - объем раствора пенообразователя, дм 3 .

Показатель устойчивости пены низкой и средней кратности определяют как время выделения из пены 50 % массы раствора.

5.3.2 Определение кратности и показателя устойчивости пены высокой кратности

5.3.2.1 Применяемое оборудование, средства измерений и растворы

Для определения кратности и показателя устойчивости пены высокой кратности используют установку (см. рисунок ), в комплект которой входят:

1 - вентилятор с электроприводом; 2 - кран с манометром; 3 - распылитель; 4 - сетка

Рисунок 4 - Генератор пены высокой кратности

Емкость (см. рисунок ) цилиндрической формы с коническим дном для сбора пены вместимостью (500 ± 2) дм 3 и массой не более 20 кг. Диаметр емкости - (800 ± 5) мм, высота вертикальной стенки - (1000 ± 5) мм. В коническом дне емкости находится центральное отверстие диаметром 3 мм. На расстоянии 20 мм от центра центрального отверстия находятся восемь расположенных по окружности отверстий диаметром 3 мм для вытекания жидкости;

Рисунок 5 - Емкость для сбора пены

Насос водяной, обеспечивающий объемный расход раствора 0,10 - 0,15 дм 3 /с при давлении на стволе (0,50 ± 0,05) МПа;

Весы с пределом взвешивания не менее 30 кг и погрешностью измерений не более 0,05 кг;

Секундомер с пределом измерений 60 мин и ценой деления 0,2 с;

5.3.2.2 Подготовка к испытанию

Готовят 100 дм 3 рабочего раствора испытуемого пенообразователя. Проверяют работоспособность насосной установки. Определяют массу пустой емкости для сбора пены.

Перед каждым определением осуществляют контроль температуры рабочего раствора пенообразователя, которая должна составлять (20 ± 2) °С.

5.3.2.3 Проведение испытания

Условия проведения испытания: температура воздуха 15 °С - 25 °С, атмосферное давление 84 - 106,7 кПа, относительная влажность воздуха 40 % - 80 %.

Для определения кратности пены высокой кратности приготовленный рабочий раствор подают под давлением (0,50 ± 0,01) МПа в напорный рукав, на выходе которого установлен генератор пены высокой кратности. Отверстия на дне емкости закрывают. После получения устойчивой пенной струи наполняют емкость для сбора пены и взвешивают ее. При этом должно быть равномерное заполнение всего объема емкости без образования пустот. По разности масс заполненной и пустой емкостей находят массу пены. Отверстия на дне емкости открывают для истечения раствора. Кратность пены вычисляется по формуле ().

Показатель устойчивости пены определяют как время выделения из пены 50 % массы раствора.

5.3.2.4 Обработка результатов

За результат испытания принимают среднеарифметическое трех параллельных определений. Допустимое расхождение между результатами наиболее отличающихся определений с доверительной вероятностью 0,95 должно быть не более 10 % среднего значения.

Сущность метода заключается в определении времени тушения н-гептана в противне пеной низкой кратности при установленной интенсивности подачи рабочего раствора пенообразователя и определении времени повторного воспламенения поверхности горючего от внесенного в потушенный пеной модельный очаг горящего тигля.

5.4.1 Применяемое оборудование, средства измерений, реактивы и растворы:

Противень круглый, изготовленный из стали низкой прочности, с внутренним диаметром (1900 ± 15) мм, высотой (200 ± 10) мм, толщиной стенок (2,50 ± 0,05) мм, площадью дна (2,82 ± 0,05) м 2 ;

Насос водяной, обеспечивающий объемный расход раствора (0,166 ± 0,001) дм 3 /с при давлении на стволе (0,58 ± 0,02) МПа;

Ствол пожарный пены низкой кратности с распылителем (см. рисунок ), позволяющий обеспечить объемный расход раствора (0,166 ± 0,001) дм 3 /с при давлении на стволе (0,58 ± 0,02) МПа;

Тигель для повторного воспламенения, изготовленный из стали низкой прочности, с внутренним диаметром (295 ± 5) мм, высотой (130 ± 10) мм, толщиной стенок (2,50 ± 0,05) мм. Тигель имеет ручки, с помощью которых на шесте он подается в противень;

Емкость мерная для приготовления рабочего раствора пенообразователя, вместимостью 100 - 110 дм 3 ;

Секундомер с пределом измерений 60 мин и ценой деления 0,2 с;

5.4.2 Подготовка к испытанию

Условия проведения испытания:

Испытание проводят на открытом воздухе. Температура воздуха 10 °С - 22 °С. Скорость ветра вблизи противня не более 1,5 м/с. Перед каждым определением осуществляют контроль температуры н-гептана и рабочего раствора пенообразователя, которая должна составлять (17,5 ± 2,5) °С.

Готовят 100 дм 3 рабочего раствора испытуемого пенообразователя. Устанавливают противень на ровной поверхности земли. Тигель для повторного воспламенения устанавливают на расстоянии от 2,5 до 3,0 м от противня. Проверяют работоспособность насосной установки. Располагают ствол на таком расстоянии и с таким наклоном, чтобы пена попадала в центр очага под углом 45°.

5.4.3 Определение времени тушения н-гептана пеной низкой кратности

Заливают в противень (150 ± 5) дм 3 н-гептана без водяной подушки. В тигель для повторного воспламенения заливают 7 дм 3 н-гептана. Зажигают горючее в противне и тигле. Время свободного горения в противне (120 ± 5) с. Подают пену в центр противня в течение (120 ± 2) с, даже если тушение наступило раньше этого времени.

5.4.4 Определение времени повторного воспламенения

Через (60 ± 2) с после прекращения подачи пены в центре противня с потушенным горючим устанавливают горящий тигель для повторного воспламенения. Тигель опускают на дно противня. При опускании тигля необходимо следить, чтобы пена из противня не потушила горючее в тигле.

Фиксируют время с момента установки тигля в противень до момента, когда вся площадь противня будет охвачена пламенем.

Проводят три параллельных определения. При успешном тушении в первых двух определениях третье не проводят.

5.4.5 Обработка результатов

За результат испытания принимают среднеарифметическое результатов двух успешных параллельных определений времени тушения и времени повторного воспламенения. Допустимое расхождение между результатами испытаний с доверительной вероятностью 0,95 должно быть не более 20 % среднего значения. В случае получения отрицательного результата в двух определениях из трех при определении времени тушения или времени повторного воспламенения окончательный результат считают отрицательным.

Сущность метода заключается в определении времени тушения н-гептана пеной средней кратности при установленной интенсивности подачи рабочего раствора пенообразователя в лабораторных условиях.

5.5.1 Применяемое оборудование, средства измерений и растворы

Для определения времени тушения пеной средней кратности используют установку (см. рисунок ), в комплект которой входят:

Генератор пены, обеспечивающий получение пены средней кратности 80 ± 20 при рабочих объемных расходах раствора (2,0 ± 0,2) г/с и воздуха (160 ± 40) см 3 /с. Для изготовления пакета сеток генератора применяют сетку из нержавеющей стали со стороной ячейки в свету 0,9 мм и диаметром проволоки 0,2 мм;

Емкость с рабочим раствором пенообразователя, изготовленная из металла или полимерного материала, вместимостью не менее 5 дм 3 с горловиной и завинчивающейся крышкой;

Ротаметр газовый по ГОСТ 13045 , обеспечивающий контроль объемного расхода воздуха (160 ± 40) см 3 /с;

Ротаметр жидкостный по ГОСТ 13045 , обеспечивающий контроль объемного расхода рабочего раствора (2,0 ± 0,2) см 3 /с;

1 - генератор пены; 2, 9 - ротаметр; 3 - бачок; 4, 5, 7, 8 - кран; 6 - манометр;
10 - противень; 11 - ограждение; 12 - выдвижной держатель

Рисунок 6 - Схема установки для тушения пеной средней кратности
(стендовая методика)

Ограждение для горелки и генератора пены оборудуют окном для наблюдения за ходом тушения, входной дверью для замены противня и контроля генератора пены, выдвижным держателем для генератора пены.

5.5.2 Подготовка к испытанию

Условия проведения испытания: температура воздуха от 15 °С до 25 °С, давление от 84 до 106,7 кПа, относительная влажность воздуха от 40 % до 80 %.

Готовят 4 дм 3 рабочего раствора испытуемого пенообразователя температурой (20 ± 2) °С. Раствор заливают в бачок. Подают воздух и раствор в генератор пены. Через 5 - 10 с после начала подачи пены отбирают пробу в мерную емкость. Фиксируют время набора пены. Отбор пробы следует проводить таким образом, чтобы мерная емкость была заполнена равномерно по всему объему. Определяют массу пены взвешиванием мерной емкости до и после набора пены.

Расход раствора вычисляют делением массы пены на время заполнения сосуда, объемный расход воздуха - делением объема пены на время заполнения сосуда. Если расходы соответствуют установленным, то приступают к проведению испытания.

5.5.3 Проведение испытания

После проверки работы генератора пены в горелку заливают н-гептан слоем высотой (20 ± 1) мм. Гептан зажигают и выдерживают время свободного горения (180 ± 5) с. Во время свободного горения генератор пены должен находиться вне зоны пламени. Затем подают пену и вводят генератор пены в зону горения таким образом, чтобы пена подавалась в центр противня, поддерживая установленные расходы раствора и воздуха. Одновременно с вводом генератора пены включают секундомер.

Измеряют время с момента начала подачи пены в противень до момента прекращения горения.

Проводят три определения. При успешном тушении в первых двух определениях третье не проводят.

Повторное использование н-гептана недопустимо.

5.5.4 Обработка результатов

За результат испытания принимают среднеарифметическое результатов двух успешных параллельных определений.

Допустимое расхождение между результатами повторных определений с доверительной вероятностью 0,95 должно быть не более 15 % среднего значения.

Сущность метода заключается в определении времени тушения н-гептана в противне пеной средней кратности при установленной интенсивности подачи рабочего раствора и определении времени повторного воспламенения поверхности горючего от поднесенного к потушенному пеной модельному очагу горящего тигля.

5.6.1 Применяемое оборудование, средства измерений, реактивы и растворы

Для определения времени тушения н-гептана пеной средней кратности и времени повторного воспламенения используют установку (см. рисунок ), в комплект которой входят:

Ствол пожарный пены средней кратности с распылителем (см. рисунок ), обеспечивающим объемный расход раствора (0,055 ± 0,003) дм 3 /с при давлении на стволе 0,4 - 0,6 МПа;

1 - емкость с рабочим раствором пенообразователя; 2 - насос; 3 - трубопровод; 4 - рукав;
5 - манометр; 6 - пожарный ствол; 7 - противень; 8 - тигель

Рисунок 7 - Схема установки для тушения пеной средней кратности

1 - сетка; 2 - корпус; 3 - распылитель; 4 - манометр; 5 - кран; 6 - соединительная головка

Рисунок 8 - Пожарный ствол пены средней кратности

Приспособление для установки пожарного ствола пены средней кратности на край противня;

Противень круглый, изготовленный из стали низкой прочности, с внутренним диаметром (1480 ± 5) мм, высотой (150 ± 10) мм, толщиной стенки (2,50 ± 0,05) мм, площадью дна (1,72 ± 0,01) м 2 ;

Насос водяной, обеспечивающий объемный расход рабочего раствора пенообразователя (0,055 ± 0,003) дм 3 /с при давлении на стволе от 0,4 до 0,6 МПа;

Рукав напорный;

Емкость мерная вместимостью 100 - 110 дм 3 для приготовления рабочего раствора пенообразователя;

5.6.2 Подготовка к испытанию

Условия проведения испытания

Испытание проводят на открытом воздухе. Температура воздуха - от 10 °С до 22 °С, скорость ветра вблизи противня - не более 2 м/с. Перед каждым определением осуществляют контроль температуры н-гептана и рабочего раствора пенообразователя, которая должна составлять (17,5 ± 2,5) °С.

Готовят 100 дм 3 рабочего раствора испытуемого пенообразователя. Устанавливают противень на ровной поверхности земли. Заливают в противень (30 ± 1) дм 3 воды и (55 ± 1) дм 3 н-гептана. Ствол пены средней кратности устанавливают горизонтально непосредственно на краю противня с подветренной стороны. Тигель для повторного воспламенения устанавливают на расстоянии 2,5 - 3 м от противня и заливают в него (1,0 ± 0,1) дм 3 горючего. Проверяют работоспособность установки.

5.6.3 Определение времени тушения н-гептана пеной средней кратности

В противне и тигле зажигают горючее. Время свободного горения составляет (60 ± 5) с. На время свободного горения ствол выносят из зоны пламени. Включают насос и устанавливают ствол на краю противня. При испытаниях пенообразователей типов S/AR, AFFF/AR, FP/AR, FFFP/AR, AFFF, AFFF/AR-LV, FP, FFFP пену подают в течение (120 ± 5) с, даже если тушение наступило раньше этого времени. При испытаниях пенообразователей типа S подачу пены продолжают в течение (300 ± 5) с, даже если тушение наступило раньше этого времени.

Фиксируют время с момента начала подачи пены до момента прекращения горения.

Проводят три параллельных определения. При успешном тушении в первых двух определениях третье не проводят.

5.6.4 Определение времени повторного воспламенения

После прекращения подачи пены средней кратности с внешней стороны противня с потушенным горючим крепят горящий тигель для повторного воспламенения.

Фиксируют время с момента установки тигля до момента, когда вся площадь противня будет охвачена пламенем.

Проводят три параллельных определения. При успешном тушении в первых двух определениях третье не проводят.

5.6.5 Обработка результатов

За результат испытания времени тушения и времени повторного воспламенения принимают среднеарифметическое результатов двух успешных параллельных определений. Допустимое расхождение между результатами определений с доверительной вероятностью 0,95 должно быть не более 20 % среднего значения. В случае получения отрицательного результата в двух определениях из трех при определении времени тушения или времени повторного воспламенения результат испытания считают отрицательным.

Сущность метода заключается в определении времени тушения н-гептана в противне пеной высокой кратности при установленной интенсивности подачи рабочего раствора.

5.7.1 Применяемое оборудование, средства измерений, реактивы и растворы:

Генератор пены высокой кратности (см. рисунок ), позволяющий обеспечить объемный расход раствора пенообразователя (0,102 ± 0,002) дм 3 /с при давлении на стволе (0,50 ± 0,01) МПа;

Насос водяной, обеспечивающий объемный расход 0,10 - 0,15 дм 3 /с при давлении на стволе (0,50 ± 0,01) МПа;

Противень круглый, изготовленный из стали низкой прочности, с внутренним диаметром (1480 ± 15) мм, высотой (150 ± 10) мм, толщиной стенки (2,50 ± 0,05) мм, площадью дна (1,72 ± 0,01) м 2 ;

Экран для сбора пены, изготовленный из сетки (диаметр проволоки из стали низкой прочности 0,4 - 2,0 мм, размер стороны ячейки в свету 1,0 - 8,0 мм), длиной (2000 ± 50) мм, высотой (1000 ± 50) мм и шириной (2000 ± 50) мм;

Рукав напорный;

Емкость мерная для приготовления рабочего раствора пенообразователя вместимостью 100 - 110 дм 3 ;

5.7.2 Подготовка к испытанию

Условия проведения испытания

Испытание проводят на открытом воздухе. Температура воздуха 10 °С - 22 °С, скорость ветра вблизи противня не более 2 м/с. Перед каждым определением осуществляют контроль температуры н-гептана и рабочего раствора пенообразователя, которая должна составлять (17,5 ± 2,5) °С.

Готовят 100 дм 3 рабочего раствора испытуемого пенообразователя. Устанавливают противень на ровной поверхности земли внутри экрана для сбора пены. Заливают в противень (30 ± 1) дм 3 воды и (55 ± 1) дм 3 н-гептана. Располагают генератор на расстоянии (7,5 ± 2,5) м от противня на тележке такой высоты, чтобы ось пеногенератора была на (0,65 ± 0,05) м выше поверхности земли (см. рисунок ). Проверяют работоспособность установки.

1 - генератор пены высокой кратности на передвижной платформе; 2 - высокократная пена;
3 - противень с горючим; 4 - экран для сбора пены

Рисунок 9 - Схема установки

5.7.3 Проведение испытания

Горючее в противне зажигают. Время свободного горения составляет (60 ± 5) с. Включают насос. Генератор пены высокой кратности подводят к противню на расстояние (1,0 ± 0,1) м. Подачу пены из генератора осуществляют в течение (120 ± 2) с, даже если тушение наступило раньше.

Фиксируют время с момента начала подачи пены до момента прекращения горения.

Проводят три параллельных определения. При успешном тушении в первых двух определениях третье не проводят.

5.7.4 Обработка результатов

За результат испытания принимают среднеарифметическое результатов двух успешных параллельных определений времени тушения. Допустимое расхождение между результатами параллельных определений с доверительной вероятностью 0,95 должно быть не более 20 % среднего значения. В случае получения отрицательного результата в двух определениях из трех результат испытания считают отрицательным.

Измерение поверхностного натяжения рабочего раствора пенообразователя или смачивателя и межфазного натяжения на границе рабочего раствора с н-гептаном проводят методом «отрыва кольца» (метод Де-Нуи).

5.8.1 Применяемые приборы, посуда, реактивы и растворы:

Тензиометр - экспериментальный прибор для измерения поверхностного и межфазного натяжения жидкостей с погрешностью не более 0,1 мН/м (см. рисунок ). Прибор должен в автоматическом режиме с помощью измерительного кольца определять значение поверхностного и межфазного натяжения по результатам не менее пяти определений. Прибор должен иметь защиту весовой системы от перегрузки, уровнемер для установки по горизонтали, защитный экран для предотвращения воздействия колебаний воздуха и датчик температуры образца. Горизонтальная платформа для удержания кюветы с образцом должна иметь возможность двигаться вверх и вниз для изменения вертикальной позиции образца;

1 - измерительное кольцо; 2 - плечо измерительного кольца; 3 - горизонтальная платформа тензиометра;
4 - рукоятка подъемного механизма столика; 5 - панель управления тензиометра;
6 - кювета с рабочим раствором; 7 - весовая система; 8 - защитный экран

Рисунок 10 - Схема тензиометра для определения поверхностного натяжения
рабочих растворов

Кольцо измерительное для тензиометра. Проволока кольца - круглая диаметром не менее 0,3 мм, нижняя часть кольца должна иметь одну плоскость без изгибов и шероховатостей. Кольцо должно быть сварено в непрерывный круг и удерживаться на двух параллельных плечах. Длина плечей измерительного кольца должна быть не менее 23 мм. Диаметр кольца не менее 19 мм. При размещении на приборе плоскость кольца должна быть параллельна плоскости поверхности рабочего раствора;

Кювета для водного раствора пенообразователя или смачивателя. Кювета представляет собой стеклянную емкость правильной цилиндрической формы диаметром не менее 64 мм;

Цилиндр мерный вместимостью 500 см 3 по ГОСТ 1770 для приготовления рабочего раствора пенообразователя или смачивателя;

Жидкость горючая - н-гептан по ГОСТ 25828 ;

5.8.2 Подготовка к испытанию

Кювета и кольцо должны быть очищены, промыты дистиллированной водой и высушены. Кольцо дополнительно обжигают на газовой горелке в течение 5 с и вывешивают на крючке весовой системы тензиометра.

Тензиометр должен быть помещен на стабильную основу, свободную от вибраций.

Готовят растворы пенообразователей или смачивателей рабочей концентрацией. Температура растворов и н-гептана должна составлять (20,0 ± 0,2) °С. Проводят настройку прибора.

На панели управления тензиометра устанавливают:

Метод определения - кольцо;

Данные о плотности раствора пенообразователя или смачивателя;

Значения скорости опускания платформы тензиометра 0,15 - 0,30 мм/с.

5.8.3 Проведение испытания

Условия проведения испытания: температура воздуха (20,0 ± 0,2) °С, давление 84 - 106,7 кПа, относительная влажность воздуха 40 % - 80 %.

Приготовленный рабочий раствор наливают в кювету. Высота столба жидкости в кювете должна составлять 15 - 20 мм. Кювету с рабочим раствором устанавливают на платформу тензиометра. Проверяют температуру раствора.

Рукояткой подъемного механизма или автоматически платформу тензиометра поднимают таким образом, чтобы измерительное кольцо погрузилось в раствор и находилось на 1 мм ниже поверхности раствора.

На панели управления тензиометра обнуляют весовую систему, а затем осуществляют запуск начала измерения поверхностного натяжения.

Измерения заканчиваются автоматически. На панели управления тензиометром определяется среднее значение поверхностного натяжения, рассчитанное по результатам не менее пяти параллельных измерений.

После проведения измерений поверхностного натяжения платформу тензиометра опускают, в кювету поверх рабочего раствора заливают н-гептан для определения межфазного натяжения. Высота столба раствора и н-гептана в кювете должна составлять 30 - 40 мм.

Рукояткой подъемного механизма или автоматически платформу тензиометра поднимают таким образом, чтобы измерительное кольцо погрузилось сначала в н-гептан, а затем в рабочий раствор и находилось на 1 мм ниже поверхности раствора.

На панели управления тензиометра указывают данные о разности плотностей раствора пенообразователя и н-гептана.

На панели управления тензиометра обнуляют весовую систему, а затем осуществляют запуск начала измерения межфазного натяжения.

Измерения заканчиваются автоматически. На панели управления тензиометром определяется среднее значение межфазного натяжения, рассчитанное по результатам не менее пяти параллельных измерений.

Сущность метода заключается в определении времени смачивания образца из хлопковой ткани раствором смачивателя или пенообразователя, используемого в качестве смачивателя. Измеряют время с момента полного погружения в испытуемый раствор образца до момента, когда образец начнет тонуть.

5.9.1 Применяемая аппаратура, материалы, растворы и посуда:

Образцы круглой формы из неотбеленной хлопковой ткани диаметром (30 ± 1) мм, выдержанные при относительной влажности воздуха 65 % в течение 3 сут. Поверхностная плотность ткани 494 г/м 2 , количество нитей на 1 см длины ткани должно составлять 11 шт.;

Приспособление зажимное для погружения образца из хлопковой ткани в рабочий раствор (см. рисунок ). Для изготовления приспособления используют нержавеющую металлическую проволоку диаметром 2 мм;

Стакан стеклянный цилиндрической формы, диаметром 95 мм и вместимостью 1000 см 3 ;

Цилиндры мерные по ГОСТ 1770 для приготовления растворов смачивателя объемом 2000 см 3 с ценой деления 20 см 3 в количестве 5 шт.;

Секундомер с пределом измерений 60 мин и ценой деления 0,2 с;

Вода питьевая или дистиллированная.

Рисунок 11 - Схема зажимного приспособления для погружения образца из
хлопковой ткани в рабочий раствор

5.9.2 Подготовка к испытанию

В зависимости от значения установленной рабочей объемной концентрации смачивателя в растворе определяют диапазон для пяти концентраций. Объемную долю смачивателя С п, %, вычисляют по формуле

где С раб - рабочая объемная концентрация смачивателя, %;

п - номер определения в исследуемом диапазоне 1 - 5.

Мерные цилиндры нумеруют от 1 до 5.

Зажим, стакан и мерные цилиндры тщательно промывают, обезжиривают смесью ацетона и этилового спирта в равном соотношении, ополаскивают дистиллированной водой и протирают фильтровальной бумагой.

Готовят пять водных растворов с установленными концентрациями смачивателя. В пятом цилиндре готовят раствор с наибольшей концентрацией смачивателя в количестве 2000 см 3 . В четвертый цилиндр заливают 1000 см 3 воды и 1000 см 3 раствора из пятого цилиндра. В третий цилиндр заливают 1000 см 3 воды и 1000 см 3 раствора из четвертого цилиндра. Таким образом, продолжают разбавление до минимальной концентрации, при этом концентрация смачивателя в каждом последующем цилиндре снижается вдвое. Количество приготовленного раствора составит 2000 см 3 в первом цилиндре и по 1000 см 3 - в цилиндрах со второго по пятый. Температура воды при приготовлении растворов должна составлять (28 ± 2) °С. После приготовления растворы охлаждают.

5.9.3 Проведение испытания

Условия проведения испытания: температура воздуха (20,0 ± 0,2) °С, давление 84 - 106,7 кПа, относительная влажность воздуха 60 % - 70 %.

Испытания начинают с наименьшей концентрации смачивателя.

В стакан наливают 700 см 3 раствора. Температура раствора должна составлять (20 ± 1) °С. Пену с поверхности раствора убирают фильтровальной бумагой. Образец из хлопчатобумажной ткани помещают в зажимы приспособления и вертикально полностью погружают в раствор. Опорные ручки устанавливают на край стакана, зажимы приспособления раскрывают (см. рисунок ). Во время проведения эксперимента каждые 10 с зажимы приспособления сжимают и раскрывают для установления вертикального положения образца, деформирующегося в растворе.

Рисунок 12 - Определение смачивающей способности при использовании
дистиллированной и питьевой воды

Измеряют время с момента погружения образца в рабочий раствор до момента, когда образец начинает свободно тонуть. Измеренное время является показателем смачивающей способности.

5.9.4 Обработка результатов

За результат испытания принимают среднеарифметическое двух параллельных определений показателя смачивающей способности для одной концентрации. Допустимое расхождение между результатами параллельных определений с доверительной вероятностью 0,95 должно быть не более 20 % среднего значения.

Строят логарифмическую зависимость показателя смачивающей способности от объемной концентрации смачивателя в растворе (см. рисунок ). Графическим способом определяют минимальную объемную концентрацию смачивателя в рабочем растворе, при которой значение показателя смачивающей способности составляет 45 с.

Результатом испытаний является определение соответствия рабочей объемной концентрации смачивателя и определение значения показателя смачивающей способности. Рабочая объемная концентрация смачивателя в растворе должна быть не менее концентрации, при которой значение показателя смачивающей способности составляет 45 с.

Рисунок 13 - Определение показателя смачивающей способности смачивателя

Сущность метода заключается в определении времени смачивания фильтра из хлопковой ткани раствором смачивателя. Измеряют время с момента налива испытуемого раствора в полый цилиндр устройства для определения показателя смачивающей способности до момента появления первой капли.

5.10.1 Применяемое оборудование, материалы, средства измерений, посуда и реактивы:

Фильтры из неотбеленной хлопковой ткани, вырезанные в виде круга диаметром (30 ± 1) мм, выдержанные при относительной влажности воздуха 65 % в течение 3 сут. Поверхностная плотность ткани 494 г/м 2 , количество нитей на 1 см длины ткани составляет 11 шт.;

Цилиндры мерные по ГОСТ 1770 для приготовления растворов смачивателя вместимостью 100 см 3 в количестве 5 шт.;

Мензурка вместимостью 50 см 3 по ГОСТ 1770 ;

Устройство для определения показателя смачивающей способности со штативом для крепления устройства (см. рисунок ). Устройство состоит из металлического полого цилиндра и металлического стока. Внутренний диаметр полого цилиндра должен составлять (25 ± 1) мм. Между полым цилиндром и стоком установлен фильтр из хлопковой ткани. Полый цилиндр и сток крепят друг к другу винтами;

Чашка стеклянная для сбора капель со стока;

Секундомер с пределом измерений 60 мин и ценой деления 0,2 с;

Вода морская или жесткая.

1 - полый цилиндр; 2 - винт; 3 - пластинка из хлопковой ткани: 4 - сток; 5 - чашка; 6 - штатив

Рисунок 14 - Устройство для определения показателя смачивающей способности

5.10.2 Подготовка к испытанию

Между полым цилиндром и стоком устройства устанавливают фильтр из хлопковой ткани. Полый цилиндр и сток крепят друг к другу винтами. Устройство для определения показателя смачивающей способности устанавливают на штатив. Под стоком устройства помещают чашку.

В зависимости от значения установленной рабочей объемной концентрации смачивателя в растворе определяют диапазон для пяти концентраций. Значения объемных концентраций смачивателя в исследуемом диапазоне рассчитывают по формуле ().

Мерные цилиндры нумеруют от 1 до 5. Готовят пять водных растворов с установленными концентрациями смачивателя. В пятом цилиндре готовят раствор с наибольшей концентрацией смачивателя в количестве 100 см 3 . В четвертый цилиндр заливают 50 см 3 воды и 50 см 3 раствора из пятого цилиндра. В третий цилиндр заливают 50 см 3 воды и 50 см 3 раствора из четвертого цилиндра. Таким образом, продолжают разбавление до минимальной концентрации, при этом концентрация смачивателя в каждом последующем цилиндре снижается вдвое. Количество приготовленного раствора составит 100 см 3 в первом цилиндре и по 50 см 3 - в цилиндрах со второго по пятый.

Температура воды при приготовлении растворов должна составлять (28 ± 2) °С.

5.10.3 Проведение испытания

Условия проведения испытания: температура воздуха (20 ± 1) °С, давление 84 - 106,7 кПа, относительная влажность воздуха 60 % - 70 %.

Испытание начинают с наименьшей концентрации смачивателя. В мензурку наливают 10 см 3 рабочего раствора. Температура раствора должна составлять (20 ± 1) °С. Раствор из мензурки выливают в полый цилиндр устройства. Раствор смачивает фильтр и проходит через него в сток. Время с момента налива раствора в полый цилиндр до момента появления первой капли является показателем смачивающей способности.

5.10.4 Обработка результатов

За результат испытания принимают среднеарифметическое значение двух параллельных определений показателя смачивающей способности для одной концентрации. Допустимое расхождение между результатами повторных испытаний с доверительной вероятностью 0,95 должно быть не более 20 % среднего значения.

Строят логарифмическую зависимость показателя смачивающей способности от концентрации смачивателя в растворе (см. рисунок ). Графическим способом определяют минимальную концентрацию смачивателя, при которой показатель смачивающей способности составляет значение, указанное в нормативном или техническом документе на конкретный пенообразователь или смачиватель.

Рабочая объемная концентрация смачивателя в растворе должна быть не менее концентрации, при которой показатель смачивающей способности составляет значение, указанное в нормативном или техническом документе на конкретный пенообразователь или смачиватель.

Рисунок 15 - Определение показателя смачивающей способности смачивателя
с рабочей объемной концентрацией 1 %

Приложение А

(обязательное)

Для создания модели жесткой воды используют компоненты, представленные в таблице .

Таблица А.1 - Модель жесткой воды

Массовая доля, %

Вода дистиллированная по ГОСТ 6709

н 2 о

99,8794

ГОСТ 4209

MgCl 2 × 6H 2 O

0,0381

]

СаCl 2 × 2Н 2 O

0,0825

Приложение Б

(обязательное)

Для создания модели морской воды используют компоненты, представленные в таблице

Таблица Б.1 - Модель морской воды

Химическая формула компонента

Массовая доля, %

Вода дистиллированная по ГОСТ 6709

н 2 о

95,84

Магний хлористый 6-водный, ч. по ГОСТ 4209

MgCl 2 × 6H 2 O

1,1

Натрий сернокислый безводный, ч. по ГОСТ 4166

Na 2 SO 4

0,40

Натрий хлористый, ч. по ГОСТ 4233

NaCl

2,50

Кальций хлорид 2-водный по [ ]

СаCl 2 × 2Н 2 O

0,16

Библиография

Ключевые слова: пенообразователи, смачиватели, тушение пожаров, термины и определения, технические требования, методы испытаний

Воздушно-механическая пена, полученная из современных пеноконцентратов, является эффективным огнетушащим веществом. Пенный слой, сформированный на поверхности горящего вещества, одновременно обеспечивает его изоляцию от поступления новых порций кислорода, выступающего в качестве окислителя, и производит охлаждающий эффект за счёт большой теплоёмкости воды, входящей в .

Процесс пенообразования происходит на специальных пеногенерирующих устройствах, при подаче на них под давлением рабочего раствора пенообразователя, полученного из пеноконцентратов с различными объёмными долями применения, при смешении его с воздухом.

Пены, применяемые для целей пожаротушения, должны обладать высокой структурно-механической стойкостью к неблагоприятному воздействию на них разнообразных внешних факторов, присутствующих в зоне пожара.

Пены различной кратности позволяют решать задачи пожаротушения объектов различной природы происхождения путём выбора наиболее оптимального огнетушащего вещества.

ООО «Завод Спецхимпродукт» выпускает продукцию в ассортименте, разнообразные модификации которой позволяют полностью перекрыть все возникающие потребности при ликвидации пожаров классов А и В.

Общие определения

для тушения пожаров – концентрированный водный раствор стабилизатора пены (поверхностно-активного вещества), образующий при смешении с водой рабочий раствор пенообразователя или смачивателя.

Плёнкообразующий пенообразователь – пенообразователь, огнетушащая способность и устойчивость к повторному воспламенению которого определяется образованием на поверхности углеводородной горючей жидкости водной плёнки.

Партия пенообразователя – любое количество единовременно изготовленного пенообразователя, однородного по показателям качества, сопровождаемого одним документом о качестве.

Пена - дисперсная система, состоящая из ячеек – пузырьков воздуха (газа), разделённых плёнками жидкости, содержащей пенообразователь.

Огнетушащая воздушно-механическая пена – пена, получаемая с помощью специальной аппаратуры за счёт эжекции или принудительной подачи воздуха или другого газа, предназначенная для тушения пожаров.

Объёмные доли применения, раствор пенообразователя

Концентрация рабочего раствора пенообразователя - содержание пенообразователя в рабочем растворе для получения пены или раствора смачивателя, выраженное в процентах.

Методика получения пены различной концентрации:

1. Для получения пеноконцентрата 6%:

  • К 5-ти частям воды добавить 1-у часть пеноконцентрата 1%
  • К 1-ой части воды добавить 1-у часть пеноконцентрата 3%

2. Для получения пеноконцентрата 3%:

  • К 2-ум частям воды добавить 1-у часть пеноконцентрата 1%.

Пример: Из 1 т ПО (6%) можно получить 16,6 т рабочего раствора. Такое же количество рабочего раствора можно получить из 0,17 т ПО (1%)

Преимущества при использовании пеноконцентрата с высокими концентрациями ПАВ (объёмная доля применения 1% и ниже):

1. Осуществляется экономия площадей для и снижение транспортных издержек при его перевозке

2. Увеличивается запас возимого объёма огнетушащего вещества при доставке к месту пожара в штатном пенобаке пожарного автомобиля (при наличии соответствующих систем дозирования)

3. Обеспечивается возможность оперативного приготовления 6% -го и 3%-го пеноконцентрата непосредственно на месте при отсутствии соответствующих систем дозирования (пеносмешения)

Раствор пенообразователя

Рабочий раствор пенообразователя (смачивателя) – водный раствор с регламентированной рабочей объёмной концентрацией пенообразователя (смачивателя). Рабочая концентрация пенообразователя составляет от 0,5% до 6%, смачивателя – от 0,1% до 3%.

Интенсивность подачи рабочего раствора – количество водного раствора пенообразователя, подаваемого в единицу времени на единицу поверхности горючей жидкости.

Методика получения рабочего раствора пенообразователя из пеноконцентрата с различными объёмными долями применения состоит в строгом выдерживании процентного соотношения воды и соответствующего пеноконцентрата при их перемешивании.

Генераторы пены

Установка пенного пожаротушения - установка пожаротушения, в которой в качестве огнетушащего вещества используют воздушно-механическую пену, получаемую из водного раствора пенообразователя

Пеногенераторы для тушения подачей сверху – специальные устройства для получения огнетушащей воздушно-механической пены из рабочего раствора пенообразователя путём эжекции или принудительной подачи воздуха

Система подслойного тушения пожара в резервуаре - комплекс устройств, оборудования и фторсодержащего пленкообразующего пенообразователя, предназначенного для подслойного тушения пожара нефти и нефте-продуктов в резервуаре.

Высоконапорный пеногенератор - устройство для получения из водного раствора 1%, 3% или 6% - го пенообразователя воздушно-механической пены низкой кратности и ее подачи в слой нефти или нефтепродуктов в условиях противодавления, создаваемого столбом жидкости в установках подслойного пожаротушения резервуаров.

Поскольку раствор пенообразователя может быть получен из пеноконцентратов с различными объёмными долями применения, то изначально необходимо руководствоваться техническими особенностями индивидуальной системы дозирования, конструктивно рассчитанной на конкретную концентрацию пенообразователя. Это обстоятельство необходимо обязательно учитывать при оформлении заявки на приобретение пенообразователя. Следует также принимать во внимание, что чем насыщеннее применяемый пеноконцентрат, тем ниже вероятность получения оптимального раствора пенообразователя, поскольку не всегда возможно обеспечить на практике равномерное перемешивание воды и высококонцентрированного пенообразователя в процессе дозирования. Полученный таким образом рабочий раствор пенообразователя в последующем позволит получить огнетушащую пену, но, как минимум, будет иметь место перерасход дорогостоящего пеноконцентрата.

Кратность пены пенообразователя – безразмерная величина, равная отношению объёмов пены и раствора, содержащегося в пене.

  • Пена низкой кратности (до 20)
  • Пена средней кратности (от 21 до 200)
  • Пена высокой кратности (свыше 200)

Кратность пенообразователя

Кратность пенообразователя (полученной воздушно-механической пены) в равной мере зависит как от физико-химических свойств исходного пеноконцентрата общего или целевого назначения, так и от технических особенностей генераторов пены, имеющих специфические конструктивные ограничения. В настоящее время в мире сформировалась тенденция применения на практике пены только низкой или только высокой кратности. Это обусловлено повсеместным применением фторсодержащих пенообразователей, которые за счёт эффекта образования саморастекаемой водной плёнки (локальное пожаротушение на поверхности горючей жидкости) позволяют ограничиться пеной низкой кратности для быстрого достижения целей пожаротушения. В случаях вынужденного объёмного пожаротушения (авиационные ангары, трюмы речных (морских) судов и т.д.) тандем совместимых пеноконцентратов и пеногенераторов позволяют получить высокую кратность пены, заполняющую защищаемый объект и оперативно ликвидирующую пожар. На территории России получение и применение пены средней кратности, тем не менее, продолжает сохранять свою актуальность из-за массового применения на практике генераторов пены средней кратности.

Устойчивость пены – способность пены сохранять первоначальные свойства.