Учебник: Воздушно-десантная подготовка. Виды и характеристики парашютов Армейские парашюты

1. ИСТОРИЯ РАЗВИТИЯ ПАРАШЮТА И СРЕДСТВ ДЕСАНТИРОВАНИЯ ВООРУЖЕНИЯ, ВОЕННОЙ ТЕХНИКИ И ГРУЗОВ

Зарождение и развитие воздушно-десантной подготовки связано с историей парашютизма и совершенствованием парашюта.

Создание различных приспособлений для безопасного спуска с большой высоты уходит в глубину веков. Научно обоснованным предложением такого рода является изобретение Леонардо да Винчи (1452 - 1519 гг.). Он писал: «Если у человека есть шатер из накрахмаленного полотна шириной в 12 локтей и высотой 12, то он сможет бросаться с любой высоты без опасности для себя». Впервые практический прыжок был совершен в 1617 г., когда венецианский инженер-механик Ф. Веранцио сделал приспособление и, прыгнув с крыши высокой башни, благополучно приземлился.


Слово «парашют», сохранившееся до настоящего времени, было предложено французским ученым С. Ленорманом (от греческого p а r а – против и французского chute – падение). Свой аппарат он построил и лично испытал, совершив в 1783 г. прыжок из окна обсерватории.


Дальнейшее развитие парашюта связано с появлением аэростатов, когда возникла необходимость создания спасательных приспособлений. Парашюты, применявшиеся на аэростатах, имели либо обруч, либо спицы для того, чтобы купол был всегда в раскрытом состоянии, и его можно было применить в любой момент. Парашюты в таком виде крепились под гондолой воздушного шара или являлись промежуточным соединительным звеном между аэростатом и гондолой.

В XIX веке в куполе парашюта начали делать полюсное отверстие, из каркаса купола были изъяты обручи и спицы, а сам купол парашюта стали прикреплять к оболочке воздушного шара сбоку.


Пионерами отечественного парашютизма являются Станислав, Юзеф и Ольга Древницкие. Юзеф к 1910 г. совершил уже более 400 прыжков с парашютом.

В 1911 году Г. Е. Котельников разработал и запатентовал ранцевый парашют РК-1. Испытания его успешно прошли 19 июня 1912 г. Новый парашют был компактен и отвечал всем основным требованиям применения в авиации. Купол его изготовлялся из шелка, стропы разделялись на группы, подвесная система состояла из пояса, нагрудного обхвата, двух плечевых ремней и обхватов для ног. Главной особенностью парашюта была его автономность, дающая возможность пользоваться им независимо от самолета.


До конца 20-х годов парашюты создавались и совершенствовались в целях спасения жизни аэронавта или летчика в случае вынужденного покидания летательного аппарата в воздухе. Методика покидания отрабатывалась на земле и основывалась на теоретических и практических исследованиях прыжка с парашютом, знании рекомендаций по покиданию летательного аппарата и правил пользования парашютом, т. е. закладывались основы наземной подготовки.

Без тренировки в практическом совершении прыжка парашютная подготовка сводилась к тому, чтобы научить летчика надеть парашют, отделиться от самолета, выдернуть вытяжное кольцо, а после раскрытия парашюта рекомендовалось: «при приближении к земле, подготавливаясь к спуску, принять сидячее положение в помочах, но так, чтобы колена были ниже бедер. Не пытайтесь встать, не напрягайте мускулы, свободно опуститесь, и если потребуется, то покатитесь по земле».


В 1928 г. командующему войсками Ленинградского военного округа М. Н. Тухачевскому была поручена разработка нового Полевого устава. Работа над проектом устава вызвала необходимость у оперативного отдела штаба военного округа подготовить для обсуждения реферат на тему «Действия воздушного десанта в наступательной операции».


В теоретических трудах делался вывод, что сама техника высадки воздушных десантов и сущность их боя в тылу противника предъявляют повышенные требования к личному составу десанта. Программа их подготовки должна строиться на основе требований воздушно-десантных операций, охватывать широкую область навыков и знаний, так как в воздушном десанте на учете каждый боец. Подчеркивалось, что превосходная тактическая подготовка каждого члена десанта должна сочетаться с его исключительной решительностью, основанной на глубокой и быстрой оценке обстановки.


В январе 1930 г. Реввоенсовет СССР утвердил обоснованную программу строительства определенных типов летательных аппаратов (самолетов, аэростатов, дирижаблей), которые должны были полностью учитывать запросы нового, зарождающегося рода войск – воздушной пехоты.

Для проверки теоретических положений в области применения воздушных десантов на аэродроме 11-й авиабригады в Воронеже 26 июля 1930 г. открылись первые в стране парашютные занятия с выполнением прыжков из самолета. Было подготовлено 30 парашютистов в целях выброски экспериментального воздушного десанта на предстоящем опытно-показательном учении ВВС Московского военного округа. В ходе решения задач учения нашли свое отражение основные элементы воздушно-десантной подготовки.


Для участия в десанте было отобрано 10 человек. Личный состав десанта был разбит на две группы. Первую группу и отряд в целом возглавил военный летчик, участник гражданской войны, энтузиаст парашютного дела комбриг Л. Г. Минов, вторую – военный летчик Я. Д. Мошковский. Основная цель данного эксперимента заключалась в показе участникам авиационного учения техники выброски парашютного десанта и доставки ему необходимого для боя оружия и боеприпасов. Планом предусматривалось также исследование и ряда специальных вопросов парашютного десантирования: снижение десантников в условиях одновременной групповой выброски, темп выброски десантников, величина их рассеивания и время сбора после приземления, время, затрачиваемое на отыскание сброшенного на парашютах вооружения, и степень его сохранности.


Предварительная подготовка личного состава и вооружения перед десантированием проводилась на боевых парашютах, а тренировка – непосредственно на том самолете, с которого предстояло совершать прыжок.


2 августа 1930 г. с аэродрома поднялись самолет с первой группой парашютистов во главе с Л. Г. Миновым и три самолета Р-1, которые несли под крыльями по два контейнера с пулеметами, винтовками, боеприпасами. Вслед за первой была выброшена вторая группа парашютистов во главе с Я. Д. Мошковским. Десантники, быстро собрав парашюты, направились на сборный пункт, по пути распаковали контейнеры и, разобрав оружие, приступили к выполнению поставленной задачи.

2 августа 1930 г. вошло в историю как день рождения воздушно-десантных войск. С этого времени у парашюта появилось новое назначение – обеспечивать высадку войск в тылу противника, а в составе Вооруженных Сил страны появился новый род войск.


В 1930 г. открылась первая в стране фабрика по производству парашютов, ее директором, главным инженером и конструктором был М. А. Савицкий. В апреле этого же года были изготовлены первые опытные образцы спасательного парашюта типа НИИ-1, спасательных парашютов ПЛ-1 для летчиков, ПН-1 для летчиков-наблюдателей (штурманов) и парашютов ПТ-1 для совершения учебно-тренировочных прыжков летно-подъемным составом ВВС, десантниками и спортсменами-парашютистами.

В 1931 г. на этой фабрике были изготовлены парашюты ПД-1 конструкции М. А. Савицкого, которые, начиная с 1933 г. стали поступать на снабжение парашютно-десантных частей.


Созданные к тому времени парашютно-десантные мягкие мешки (ПДММ), парашютно-десантные бензиновые баки (ПДББ) и другие виды десантной тары в основном обеспечивали парашютную выброску всех видов легкого оружия и боевых грузов.


Одновременно с созданием производственной базы парашютостроения широко развернулась научно-исследовательская работа, которая ставила перед собой следующие задачи:

Создание такой конструкции парашюта, который выдержал бы нагрузку, получаемую после раскрытия при прыжке из самолета, летящего с максимальной скоростью;

Создание парашюта, обеспечивающего минимальные перегрузки на организм человека;

Определение максимально допустимой перегрузки для человеческого организма;

Изыскание такой формы купола, которая при наименьших затратах материала и простоте изготовления обеспечивала бы наименьшую скорость снижения парашютиста и препятствовала бы его раскачиванию.


При этом все теоретические расчеты необходимо было проверить на практике. Необходимо было определить, насколько безопасен прыжок с парашютом с той или иной точки самолета при максимальной скорости полета, рекомендовать безопасные приемы отделения от самолета, изучить траектории движения парашютиста после отделения при различных скоростях полета, изучить влияние парашютного прыжка на организм человека. Очень важно было знать, каждый ли десантник сможет открыть парашют вручную или необходим специальный медицинский отбор.

В результате исследований врачей Военно-медицинской академии были получены материалы, впервые осветившие вопросы психофизиологии прыжка с парашютом и имевшие практическое значение для отбора кандидатов для подготовки инструкторов по парашютно-десантной подготовке.


Для решения задач десантирования использовались бомбардировщики ТБ-1, ТБ-3 и Р-5, а также некоторые типы самолетов гражданского воздушного флота (АНТ-9, АНТ-14 и позже ПС-84). Самолет ПС-84 мог транспортировать парашютные подвески, а при внутренней загрузке мог брать 18 – 20 ПДММ (ПДББ-100), выброску которых можно было производить одновременно через обе двери силами десантников или экипажа.

В 1931 г. план боевой подготовки авиамотодесантного отряда впервые содержал парашютную подготовку. Для освоения новой дисциплины в Ленинградском военном округе были организованы сборы, на которых было подготовлено семь инструкторов парашютного дела. Инструкторы парашютной подготовки проводили большую экспериментальную работу в целях накопления практического опыта, поэтому прыгали на воду, на лес, на лед, с дополнительным грузом, при ветре до 18 м/с, с различным вооружением, со стрельбой и метанием гранат в воздухе.


Начало новому этапу в развитии воздушно-десантных войск положило постановление Реввоенсовета СССР, принятое 11 декабря 1932 г., в котором намечалось сформировать к марту 1933 г. по одному авиадесантному отряду в Белорусском, Украинском, Московском и Приволжском военных округах.


В Москве 31 мая 1933 г. была открыта Высшая парашютная школа ОСОАВИАХИМ, приступившая к планомерной подготовке инструкторов-парашютистов и укладчиков парашютов.

В 1933 г. были освоены прыжки в зимних условиях, установлены возможные для массовых прыжков температура, сила ветра у земли, наилучший способ приземления и обоснована необходимость разработки специального обмундирования десантника, удобного для совершения прыжка и для действий на земле в ходе боя.

В 1933 г. появился парашют ПД-2, через три года парашют ПД-6, купол которого имел круглую форму и площадь 60,3 м 2 . Осваивая новые парашюты, приемы и способы десантирования и накопив достаточную практику в выполнении различных прыжков с парашютом, инструкторы-парашютисты давали рекомендации по улучшению наземной подготовки, по совершенствованию способов покидания самолета.


Высокий профессиональный уровень инструкторов-парашютистов позволил им подготовить к десантированию осенью 1935 г. на учениях Киевского округа 1200 парашютистов, под Минском в этом же году – более 1800 человек, а на учениях Московского военного округа в 1936 г. – 2200 парашютистов.


Таким образом, опыт учений и успехи советской промышленности позволили советскому командованию определить роль воздушно-десантных операций в современном бою и перейти от экспериментов к организации парашютно-десантных частей. В Полевом уставе 1936 г. (ПУ-36, § 7) указывалось: «Парашютно-десантные части являются действенным средством для дезорганизации управления и работы тыла противника. Во взаимодействии с войсками, наступающими с фронта, парашютно-десантные части могут оказывать решающее влияние на полный разгром противника на данном направлении».


В 1937 г. для подготовки гражданской молодежи к службе в армии был введен в действие Курс учебно-спортивной парашютной подготовки (КУПП) ОСОАВИАХИМ СССР на 1937 год, в котором задача № 17 включала такой элемент, как прыжок с винтовкой и складными лыжами.

Учебными пособиями для воздушно-десантной подготовки были инструкции по укладке парашютов, которые являлись и документами на парашют. Позднее, в 1938 г., было издано Техническое описание и инструкция по укладке парашютов.


Летом 1939 г. был проведен сбор лучших парашютистов Красной Армии, который явился демонстрацией огромных успехов, достигнутых нашей страной в области парашютизма. По своим результатам, по характеру и массовости прыжков сбор являлся выдающимся событием в истории парашютизма.

Опыты проведенных прыжков анализировались, выносились на обсуждение, обобщались, и все лучшее, приемлемое для массового обучения доводилось на сборах до инструкторов парашютной подготовки.


В 1939 г. в составе парашюта появилось страхующее устройство. Братья Доронины – Николай, Владимир и Анатолий создали полуавтоматический прибор (ППД-1) с часовым механизмом, раскрывающим парашют через заданное время после отделения парашютиста от самолета. В 1940 г. был разработан парашютный прибор ПАС-1 с анероидным устройством конструкции Л. Савичева. Прибор предназначался для автоматического раскрытия парашюта на любой заданной высоте. В последующем братья Доронины совместно с Л. Савичевым сконструировали парашютный прибор, соединив временной прибор с анероидным и назвав его КАП-3 (комбинированный автомат парашютный). Прибор обеспечивал раскрытие парашюта на заданной высоте или по истечении заданного времени после отделения парашютиста от самолета в любых условиях, если этого по какой-либо причине не сделает сам парашютист.

В 1940 г. был создан парашют ПД-10 с площадью купола 72 м 2 , в 1941 г. – парашют ПД-41, перкалевый купол этого парашюта площадью 69,5 м 2 имел квадратную форму. В апреле 1941 г. в НИИ ВВС были завершены полигонные испытания подвесок и платформ для сбрасывания парашютным способом 45- миллиметровых противотанковых орудий, мотоциклов с колясками и т. д.


Уровень развития воздушно-десантной подготовки и парашютно-десантных средств обеспечивал выполнение задач командования в ходе Великой Отечественной войны.

Первый в Великой Отечественной войне небольшой воздушный десант был применен под Одессой. Он был выброшен в ночь на 22 сентября 1941 г. из самолета ТБ-3 и имел задачу рядом диверсий и огнем нарушить связь и управление противника, создать панику в тылу врага и тем самым оттянуть с побережья часть его сил и средств. Благополучно приземлившись, парашютисты-десантники в одиночку и небольшими группами успешно выполнили поставленную задачу.


Выброска в ноябре 1941 г. воздушного десанта в Керченско-Феодосийской операции, десантирование 4-го воздушно-десантного корпуса в январе – феврале 1942 г. в целях завершения окружения Вяземской группировки противника, десантирование 3-й и 5-й гвардейских десантных бригад в Днепровской воздушно-десантной операции в сентябре 1943 г. внесли неоценимый вклад в развитие воздушно-десантной подготовки. Например, 24 октября 1942 г. был высажен воздушный десант непосредственно на аэродром Майкоп для уничтожения самолетов на аэродроме. Высадка десанта тщательно готовилась, отряд был разделен на группы. Каждый парашютист-десантник совершил пять прыжков днем и ночью, тщательно были проиграны все действия.


Для личного состава был определен комплект вооружения и снаряжения в зависимости от выполняемой ими задачи. Каждый парашютист-десантник диверсионной группы имел автомат, два диска с патронами и дополнительно три зажигательных прибора, фонарь и продовольствие на двое суток. В группе прикрытия было два пулемета, десантники этой группы не брали некоторых предметов вооружения, но имели дополнительно по 50 патронов к пулемету.

В результате нападения отряда на Майкопский аэродром было уничтожено 22 самолета противника.

Обстановка, сложившаяся в ходе войны, потребовала использования воздушно-десантных войск как для действий в составе воздушных десантов в тылу противника, так и для действий с фронта в составе гвардейских стрелковых соединений, что предъявляло дополнительные требования к воздушно-десантной подготовке.


После каждого десантирования обобщался опыт, и делались необходимые поправки в обучении десантников. Так, в пособии командиру отделения воздушно-десантных частей, изданном в 1942 г., в главе 3 было записано: «Обучение укладке и эксплуатации материальной части десантных парашютов ПД-6, ПД-6ПР и ПД-41-1 проводить по техническим описаниям этих парашютов, изложенным в специальных брошюрах», а в разделе «Подгонка оружия и снаряжения для боевого прыжка» указывалось: «Для проведения занятий прикажи подготовить парашюты, винтовки, пистолеты-пулеметы, ручные пулеметы, гранаты, носимые лопаты или топоры, подсумки-патронташи, сумки для магазинов ручного пулемета, плащ-палатки, ранцы или вещевые мешки». Там же на рисунке был показан образец крепления оружия, где дульная часть оружия с помощью резинки или тренчика крепилась к главному обхвату.


Сложность ввода в действие парашюта с помощью вытяжного кольца, а также ускоренная подготовка парашютистов-десантников во время войны вызвали необходимость создания парашюта, раскрывающегося автоматически. С этой целью в 1942 г. создается парашют ПД-6-42 с круглой формой купола площадью 60,3 м 2 . Впервые на этом парашюте была применена вытяжная веревка, которая обеспечивала раскрытие парашюта принудительным способом.


С развитием воздушно-десантных войск развивается и совершенствуется система подготовки командных кадров, начало которой было положено созданием в августе 1941 г. в городе Куйбышеве воздушно-десантного училища, которое осенью 1942 г. было передислоцировано в Москву. В июне 1943 г. училище расформировывается, а подготовка кадров продолжается на Высших офицерских курсах ВДВ. В 1946 г. в городе Фрунзе для пополнения офицерскими кадрами воздушно-десантных войск формируется военно-парашютное училище, слушателями которого стали офицеры ВДВ и выпускники пехотных училищ. В 1947 г. после первого выпуска офицеров, прошедших переподготовку, училище было передислоцировано в город Алма-Ату, а в 1959 г. – в город Рязань.


Программа училища предусматривала изучение воздушно-десантной подготовки (ВДП) как одной из основных дисциплин. Методика прохождения курса строилась с учетом требований, предъявляемых к воздушным десантам в Великой Отечественной войне.


После войны преподавание курса воздушно-десантной подготовки постоянно ведется с обобщением опыта проводимых учений, а также рекомендаций научно-исследовательских и конструкторских организаций. Кабинеты, лаборатории и парашютные городки училища оборудуются необходимыми парашютными снарядами и тренажерами, макетами военно-транспортных самолетов и вертолетов, стапелями (парашютными качелями), трамплинами и т. д., что обеспечивает ведение учебного процесса в соответствии с требованиями военной педагогики.


Все парашюты, выпускаемые до 1946 г., были предназначены для совершения прыжков из самолетов на скорости полета 160 – 200 км/ч. В связи с появлением новых самолетов и увеличением скорости их полета возникла необходимость в разработке парашютов, обеспечивающих нормальное совершение прыжков на скорости до 300 км/ч.

Увеличение скорости и высоты полета самолетов потребовало коренного усовершенствования парашюта, разработки теории прыжка с парашютом и практического освоения прыжков с больших высот с применением кислородных парашютных приборов, на разных скоростях и режимах полета.


В 1947 г. был разработан и выпущен парашют ПД-47. Авторы конструкции – Н. А. Лобанов, М. А. Алексеев, А. И. Зигаев. Парашют имел перкале-вый купол квадратной формы площадью 71,18 м 2 и массу 16 кг.


В отличие от всех предшествующих парашютов ПД-47 имел чехол, надеваемый на основной купол перед укладкой его в ранец. Наличие чехла снижало вероятность перехлестывания купола стропами, обеспечивало последовательность процесса раскрытия и уменьшало динамическую нагрузку на парашютиста в момент наполнения купола воздухом. Так была решена задача обеспечения десантирования на больших скоростях. Вместе с тем, наряду с решением главной задачи – обеспечением десантирования на больших скоростях, парашют ПД-47 имел ряд недостатков, в частности, большую площадь рассеивания парашютистов-десантников, что создавало угрозу схождения их в воздухе при массовом десанте. В целях устранения недостатков парашюта ПД-47 группа инженеров во главе с Ф. Д. Ткачевым в 1950 – 1953 гг. разработала несколько вариантов десантных парашютов типа «Победа».

В 1955 г. на снабжение воздушно-десантных войск был принят парашют Д-1 с куполом площадью 82,5 м 2 круглой формы, изготовленный из перкаля, массой 16,5 кг. Парашют позволил совершать прыжки из самолетов на скорости полета до 350 км/ч.


В 1959 г. в связи с появлением скоростных военно-транспортных самолетов возникла необходимость усовершенствования парашюта Д-1. Парашют был снабжен стабилизирующим парашютом, были модернизированы также ранец парашюта, чехол основного купола и вытяжное кольцо. Авторами усовершенствования были братья Николай, Владимир и Анатолий Доронины. Парашют получил наименование Д-1-8.


В семидесятые годы на вооружение поступил более совершенный десантный парашют Д-5. Он прост по конструкции, удобен в эксплуатации, имеет единый метод укладки и обеспечивает совершение прыжков из всех типов военно-транспортных самолетов в несколько потоков на скорости до 400 км/ч. Основные его отличия от парашюта Д-1-8 заключаются в отсутствии вытяжного шарового парашюта, немедленном вводе в действие стабилизирующего парашюта, отсутствии чехлов основного и стабилизирующего парашютов. Основной купол площадью 83 м 2 имеет круглую форму, изготовлен из капрона, масса парашюта 13,8 кг. Более совершенным видом парашюта Д-5 является парашют Д-6 и его модификации. Он позволяет свободно разворачиваться в воздухе с помощью специальных строп управления, а также значительно уменьшать скорость сноса парашютиста по ветру путем перемещения свободных концов подвесной системы.

В конце двадцатого века воздушно-десантные войска получили еще более совершенную парашютную систему – Д-10, которая благодаря увеличенной площади основного купола (100 м 2 ) позволяет увеличить полетный вес десантника и обеспечивает меньшую скорость его снижения и приземления. Современные парашюты, отличающиеся высокой надежностью раскрытия и дающие возможность выполнять прыжки с любой высоты и при любых скоростях полета военно-транспортных самолетов, постоянно совершенствуются, поэтому изучение техники прыжка с парашютом, развитие методики наземной подготовки и практического совершения прыжка продолжается.

2. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ПРЫЖКА С ПАРАШЮТОМ

Любое тело при падении в атмосфере Земли испытывает сопротивление воздуха. На этом свойстве воздуха основан принцип действия парашюта. Введение парашюта в действие производится либо сразу после отделения парашю-тиста от самолета, либо спустя некоторое время. В зависимости от того, через какое время парашют введен в действие, раскрытие его будет происходить в разных условиях.

Сведения о составе и строении атмосферы, метеорологических элементах и явлениях, определяющих условия прыжков с парашютом, практические реко-мендации для расчета основных параметров движения тел в воздухе и при при-землении, общие сведения о десантных парашютных системах, назначении и составе, работе купола парашюта позволяют наиболее грамотно эксплуатиро-вать материальную часть парашютных систем, глубже осваивать наземную подготовку и повышают безопасность совершения прыжков.

2.1. СОСТАВ И СТРОЕНИЕ АТМОСФЕРЫ

Атмосфера является средой, в которой производятся полеты различных летательных аппаратов, совершаются прыжки с парашютом, применяется воз-душно-десантная техника.

А т м о с ф е р а – воздушная оболочка Земли (от греч. atmos – пар и sphairf – шар). Её вертикальная протяженность составляет более трех земных

радиусов (условный радиус Земли равен 6357 км).

Около 99% всей массы атмосферы сосредоточено в слое у земной поверхности до высоты 30 – 50 км. Атмосфера представляет собой смесь газов, водяного пара и аэрозолей, т.е. твердых и жидких примесей (пыли, продуктов конденсации и кристаллизации продуктов горения, частиц морской соли и т.д.).


Рис. 1. Строение атмосферы

Объем основных газов составляет: азота 78,09%, кислорода 20,95%, аргона 0,93%, углекислого газа 0,03%, на долю других газов (неона, гелия, криптона, водорода, ксенона, озона) приходится менее 0,01%, водяного пара – в переменных количествах от 0 до 4%.

Атмосферу по вертикали условно делят на слои, которые отличаются по составу воздуха, характеру взаимодействия атмосферы с земной поверхностью, распределению температуры воздуха с высотой, влиянию атмосферы на полеты летательных аппаратов (рис.1.1).

По составу воздуха атмосфера делится на гомосферу – слой от земной поверхности до высоты 90 – 100 км и гетеросферу – слой выше 90 –100 км.

По характеру влияния на применение летательных аппаратов и воздушно-десантных средств атмосферу и околоземное космическое пространство, где воздействие гравитационного поля Земли на полет летательного аппарата является определяющим, можно условно разделить на четыре слоя:

Воздушное пространство (плотные слои) – от 0 до 65 км;

Приземное космическое пространство – от 65 до 150 км;

Ближний космос – от 150 до 1000 км;

Дальний космос – от 1000 до 930 000 км.

По характеру распределения температуры воздуха по вертикали атмосфера делится на следующие основные и переходные (даны в скобках) слои:

Тропосфера – от 0 до 11 км;

(тропопауза)

Стратосфера – от 11 до 40 км;

(стратопауза)

Мезосфера – от 40 до 80 км;

(мезопауза)

Термосфера – от 80 до 800 км;

(термопауза)

Экзосфера – выше 800 км.

2.2. ОСНОВНЫЕ ЭЛЕМЕНТЫ И ЯВЛЕНИЯ ПОГОДЫ, ВЛИЯЮЩИЕ НА СОВЕРШЕНИЕ ПРЫЖКА С ПАРАШЮТОМ

Погодой называется физическое состояние атмосферы в данный момент времени и в данном месте, характеризующееся совокупностью метеорологических элементов и атмосферных явлений. Основными метеорологическими элементами являются температура, атмосферное давление, влажность и плотность воздуха, направление и скорость ветра, облачность, осадки и видимость.

Температура воздуха. Температура воздуха является одним из основных метеорологических элементов, определяющих состояние атмосферы. От температуры в основном зависят плотность воздуха, влияющая на скорость снижения парашютиста, и степень насыщенности воздуха влагой, которая обусловливает эксплуатационные ограничения парашютов. Зная температуру воздуха, определяют форму одежды десантникам и возможность выполнения прыжков (так, в зимних условиях прыжки с парашютом разрешаются при температуре не ниже 35 0 С).


Изменение температуры воздуха происходит через подстилающую поверхность – воду и сушу. Земная поверхность, нагреваясь, днем становится теплее воздуха, и тепло начинает передаваться от почвы воздуху. Воздух, находящийся у земли и соприкасающийся с ней, нагревается и поднимается вверх, расширяется и охлаждается. Одновременно происходит опускание вниз более холодного воздуха, который сжимается и нагревается. Движение воздуха вверх называют восходящими потоками, а движение вниз – нисходящими потоками. Обычно скорость этих потоков невелика и равна 1 – 2 м/с. Наибольшего развития вертикальные потоки достигают в середине дня – около 12 – 15 часов, когда их скорость доходит до 4 м/с. В ночное время почва охлаждается за счет излучения тепла и становится холоднее воздуха, который тоже начинает охлаждаться, отдавая тепло почве и верхним, более холодным, слоям атмосферы.


Атмосферное давление . Величина атмосферного давления и температура определяют значение плотности воздуха, непосредственно влияющей на характер раскрытия парашюта и скорость снижения парашюта.

Атмосферное давление – давление, создаваемое массой воздуха от данного уровня до верхней границы атмосферы и измеряемое в паскалях (Па), миллиметрах ртутного столба (мм рт. ст.) и барах (бар). Атмосферное давление изменяется в пространстве и во времени. С высотой давление убывает за счет уменьшения столба вышележащего воздуха. На высоте 5 км оно примерно в два раза меньше, чем на уровне моря.


Плотность воздуха . Плотность воздуха является тем метеорологическим элементом погоды, от которого зависят характер раскрытия парашюта и скорость снижения парашютиста. Она увеличивается с понижением температуры и увеличением давления, и наоборот. Плотность воздуха непосредственно влияет на жизнедеятельность человеческого организма.

Плотность – отношение массы воздуха к объему, который он занимает, выраженное в г/м 3 , зависящее от его состава и концентрации водяного пара.


Влажность воздуха . Содержание основных газов в воздухе довольно постоянно, по крайней мере до высоты 90 км, содержание же водяного пара изменяется в больших пределах. Влажность воздуха более 80% отрицательно сказывается на прочности ткани парашюта, поэтому учет влажности имеет особое значение при его хранении. Кроме того, при эксплуатации парашюта запрещается производить его укладку на открытой площадке при дожде, снегопаде или на мокром грунте.

Удельная влажность – отношение массы водяного пара к массе влажного воздуха в том же объеме, выраженное соответственно в граммах на килограмм.

Влияние влажности воздуха непосредственно на скорость снижения парашютиста незначительно и при расчетах обычно не учитывается. Однако водяной пар играет исключительно важную роль в определении метеорологических условий выполнения прыжков.

Ветер представляет собой горизонтальное движение воздуха относи-тельно земной поверхности. Непосредственной причиной возникновения вет-ра является неравномерное распределение давления. При появлении разности атмосферного давления частицы воздуха начинают перемещаться с ускорением из области более высокого в область более низкого давления.

Ветер характеризуется направлением и скоростью. Направление ветра, принятое в метеорологии, определяется точкой горизонта, откуда движется воздух, и выражается в целых градусах окружности, отсчитываемых от севера по ходу часовой стрелки. Скоростью ветра называется путь, пройденный частицами воздуха в единицу времени. По скорости ветер характеризуют следующим образом: до 3 м/с – слабый; 4 – 7 м/с – умеренный; 8 – 14 м/с – сильный; 15 – 19 м/с – очень сильный; 20 – 24 м/с – шторм; 25 – 30 м/с – жестокий шторм; более 30 м/с – ураган. Различают ровный и порывистый ветер, по направлению – постоянный и меняющийся. Ветер считается порывистым, если его скорость в течение 2 мин изменяется на 4 м/с. Когда направление ветра изменяется более чем на один румб (в метеорологии один румб равен 22 0 30 / ), его называют меняющимся. Кратковременное резкое усиление ветра до 20 м/с и более со значительным изменением направления называется шквалом.

2.3. ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ РАСЧЕТА
ОСНОВНЫХ ПАРАМЕТРОВ ДВИЖЕНИЯ ТЕЛ В ВОЗДУХЕ
И ИХ ПРИЗЕМЛЕНИЯ

Критическая скорость падения тела . Известно, что при падении тела в воздушной среде на него действуют сила тяжести, которая во всех случаях направлена вертикально вниз, и сила сопротивления воздуха, которая направлена в каждый момент в сторону, противоположную направлению скорости падения, изменяющуюся в свою очередь как по величине, так и по направлению.

Сопротивление воздуха, действующее в направлении, противоположном движению тела, называется лобовым сопротивлением. Согласно экспериментальным данным сила лобового сопротивления зависит от плотности воздуха, скорости движения тела, его формы и размеров.

Результирующая сила, действующая на тело, сообщает ему ускорение a , рассчитываемое по формуле a = G Q , (1)

т

где G – сила тяжести; Q – сила лобового сопротивления воздуха;

m – масса тела.

Из равенства (1) следует, что

если G Q > 0 ,то ускорение положительно и скорость тела увеличивается;

если G Q < 0 ,то ускорение отрицательно и скорость тела уменьшается;

если G Q = 0 ,то ускорение равно нулю и тело падает с постоянной скоростью (рис.2).

У с т а н о в и в ш а я с я с к о р о с т ь п а д е н и я п а р а ш ю т и с т а. Силы, обусловливающие траекторию движения парашютиста, определяются теми же параметрами, что и при падении любого тела в воздухе.

Коэффициенты лобового сопротивления для различных положений те-ла парашютиста при падении относительно набегающего потока воздуха рассчитывают, зная поперечные размеры, плотность воздуха, скорость воздушного потока и измерив величину лобового сопротивления. Для производства расчетов необходима такая величина как м и д е л ь.

Мидель (миделево сечение) – наибольшее по площади поперечное сечение удлиненного тела с плавными криволинейными обводами. Для определения миделя парашютиста необходимо знать его рост и ширину раскинутых рук (или ног). В практике расчетов принимают ширину рук, равную росту, таким образом, мидель парашютиста равняется l 2 . Мидель меняется при изменении положения тела в пространстве. Для удобства расчетов принимают значение миделя величиной постоянной, а его фактическое изменение учитывают соответствующим коэффициентом лобового сопротивления. Коэффициенты лобового сопротивления для различных положений тел относительно набегающего воздушного потока приведены в таблице.

Т а б л и ц а 1

Коэффициент сопротивления различных тел

Установившуюся скорость падения тела определяют массовая плотность воздуха, которая изменяется по высоте, сила тяжести, изменяющаяся пропорционально массе тела, мидель и коэффициент лобового сопротивления пара-шютиста.


Снижение системы груз–парашют . Снижение груза с куполом парашюта, наполненным воздухом, есть частный случай падения произвольного тела в воздухе.

Как и для изолированного тела, скорость приземления системы зависит от поперечной нагрузки. Изменяя площадь купола парашюта F п, мы изменяем поперечную нагрузку, а следовательно, скорость приземления. Поэтому необходимая скорость приземления системы обеспечивается площадью купола парашюта, рассчитанной из условий эксплуатационных ограничений системы.


Снижение и приземление парашютиста . Установившаяся скорость падения парашютиста, равная критической скорости наполнения купола, гасится при раскрытии парашюта. Резкое снижение скорости падения воспринимается как динамический удар, сила которого зависит в основном от скорости падения парашютиста в момент раскрытия купола парашюта и от времени раскрытия парашюта.

Необходимое время раскрытия парашюта, а также равномерное распределение перегрузки обеспечивается его конструкцией. В парашютах десантных и специального назначения эту функцию в большинстве случаев выполняет камера (чехол), надеваемая на купол.

Иногда при раскрытии парашюта парашютист в течение 1 – 2 с испы-тывает шести – восьмикратную перегрузку. Уменьшению воздействия силы динамического удара на парашютиста-десантника способствует плотная подгонка подвесной системы парашюта, а также правильная группировка тела.


При снижении парашютист перемещается, кроме вертикального, в горизонтальном направлении. Горизонтальное перемещение зависит от направ-ления и силы ветра, конструкции парашюта и симметричности купола во вре-мя снижения. На парашюте с круглой формой купола парашютист при отсутствии ветра снижается строго вертикально, так как давление воздушного потока распределяется по всей внутренней поверхности купола равномерно. Неравномерное распределение давления воздуха по поверхности купола возникает при воздействии на его симметричность, которое осуществляется подтягиванием тех или иных строп или свободных концов подвесной системы. Изменение симметричности купола влияет на равномерность его обтекания воздухом. Воздух, выходящий со стороны поднятой части, создает реактивную силу, в результате которой происходит перемещение (скольжение) парашюта со скоростью 1,5 – 2 м/с.


Таким образом, в безветрие для горизонтального перемещения парашюта с круглым куполом в каком-либо направлении необходимо создавать скольжение путем подтягивания и удержания в этом положении строп или свободных концов подвесной системы, расположенных в стороне желаемого перемещения.

Среди парашютно-десантных средств специального назначения пара-шюты с круглым куполом, имеющим щели, или куполом в виде крыла обеспечивают горизонтальное перемещение с достаточно большой скоростью, что позволяет парашютисту-десантнику, поворачивая купол, добиваться большой точности и безопасности приземления.

На парашюте с квадратным куполом горизонтальное перемещение в воздухе происходит благодаря так называемому большому килю на куполе. Воздух, выходящий из-под купола со стороны большого киля, создает реактивную силу и вызывает горизонтальное перемещение парашюта со скоростью 2 м/с. Парашютист, развернув парашют в нужном направлении, может использовать это свойство квадратного купола для более точного приземления, для разворота по ветру или для уменьшения скорости приземления.


При наличии ветра скорость приземления равна геометрической сумме вертикальной составляющей скорости снижения и горизонтальной составляющей скорости ветра и определяется по формуле

V пр = V 2 сн + V 2 3, (2)

где V 3 – скорость ветра у земли.

Необходимо помнить, что вертикальные потоки воздуха существенно изменяют скорость снижения, при этом нисходящие потоки воздуха увеличивают скорость приземления на 2 – 4 м/с. Восходящие потоки, наоборот, уменьшают ее.

Пример: Скорость снижения парашютиста-десантника 5 м/с, скорость ветра у земли 8 м/с. Определить скорость приземления в м/с.

Решение: V пр = 5 2 +8 2 = 89 ≈ 9,4

Завершающим и наиболее сложным этапом прыжка с парашютом является приземление. В момент приземления парашютист испытывает удар о землю, сила которого зависит от скорости снижения и от быстроты потери этой скорости. Практически замедление потери скорости достигается специальной группировкой тела. Приземляясь, парашютист-десантник группируется так, чтобы сначала коснуться земли ногами. Ноги, подгибаясь, смягчают силу удара, и нагрузка распределяется по телу равномерно.

Увеличение скорости приземления парашютиста за счет горизонтальной составляющей скорости ветра увеличивает силу удара о землю (R3). Сила удара о землю находится из равенства кинетической энергии, которой обладает снижающийся парашютист, работе, произведенной этой силой:

m п v 2 = R з l ц.т. , (3)

2

откуда

R з = m п v 2 = m п ( v 2 сн + v 2 з ) , (4)

2 l ц.т. 2 l ц.т.

Где l ц.т. – расстояние от центра тяжести парашютиста до земли.

В зависимости от условий приземления и степени натренированности парашютиста величина силы удара может изменяться в широких пределах.

Пример. Определить силу удара в Н парашютиста массой 80 кг, если скорость снижения равна 5 м/с, скорость ветра у земли 6 м/с, расстояние от центра тяжести парашютиста до земли 1 м.

Р е ш е н и е: R з = 80 (5 2 + 6 2 ) = 2440 .

2 . 1

Сила удара при приземлении может восприниматься и ощущаться парашютистом по-разному. Это зависит в значительной степени от состояния поверхности, на которую он приземляется, и от того, как он изготовится к встрече с землей. Так, при приземлении на глубокий снег или на мягкий грунт удар по сравнению с приземлением на твердый грунт значительно смягчается. В случае раскачивания парашютиста-десантника сила удара при приземлении увеличивается, так как ему трудно принять правильное положение тела для принятия удара. Раскачивание необходимо погасить до подхода к земле.

При правильном приземлении нагрузки, испытываемые парашютистом-десантником, невелики. Рекомендуется для равномерного распределения нагрузки при приземлении на обе ноги держать их вместе, согнутыми настолько, чтобы под действием нагрузки они могли, пружиня, сгибаться и дальше. Напряжение ног и тела необходимо поддерживать равномерным, при этом чем больше скорость приземления, тем больше должно быть напряжение.

2.4. ОБЩИЕ СВЕДЕНИЯ О ДЕСАНТНЫХ
ПАРАШЮТНЫХ СИСТЕМАХ

Назначение и состав . Парашютной системой называется один или несколько парашютов с комплектом устройств, обеспечивающих их размещение и крепление на самолете или сбрасываемом грузе и введение в действие парашютов.

Качества и достоинства парашютных систем можно оценить, исходя из того, в какой степени они соответствуют следующим требованиям:

Выдерживать любую скорость, возможную после оставления самолета парашютистом-десантником;

Физическая суть функции, выполняемой куполом при снижении, заключается в отклонении (расталкивании) частиц встречного воздуха и трении о него, при этом часть воздуха купол увлекает за собой. Кроме того, раздвинутый воздух смыкается не непосредственно за куполом, а на некотором расстоянии от него, образуя вихри, т.е. вращательное движение струек воздуха. При раздвигании воздуха, трении об него, увлечении воздуха в направлении движения и образовании вихрей выполняется работа, которую совершает сила сопротивления воздуха. Величину этой силы в основном определяют форма и размеры купола парашюта, удельная нагрузка, природа и воздухонепроницаемость ткани купола, скорость снижения, количество и длина строп, способ крепления строп к грузу, удаление купола от груза, конструкция купола, размеры полюсного отверстия или клапанов и другие факторы.


Коэффициент сопротивления парашюта обычно близок к коэффициенту сопротивления плоской пластинки. Если же поверхности купола и пластинки одинаковы, то сопротивление будет больше у пластинки, потому что ее мидель равен поверхности, а мидель парашюта значительно меньше его поверхности. Истинный диаметр купола в воздухе и его мидель трудно вычислить или измерить. Сужение купола парашюта, т.е. отношение диаметра наполненного купола к диаметру развернутого купола, зависит от формы раскроя ткани, длины строп и других причин. Поэтому при расчете сопротивления парашюта всегда принимают во внимание не мидель, а поверхность купола – величину, точно известную для каждого парашюта.

Зависимость С п от формы купола . Сопротивление воздуха движущимся телам зависит в значительной степени от формы тела. Чем менее удобообтекаема форма тела, тем большее сопротивление испытывает тело при движении в воздухе. При конструировании купола парашюта изыскивают такую форму купола, которая при наименьшей площади купола обеспечивала бы наибольшую силу сопротивления, т.е. при минимальной площади поверхности купола парашюта (при минимальной затрате материала) форма купола должна обеспечивать грузу заданную скорость приземления.


Наименьшим коэффициентом сопротивления и наименьшей нагрузкой при наполнении обладает ленточный купол, для которого С п = 0,3 – 0,6 , для круглого купола он изменяется в пределах от 0,6 до 0,9. Купол квадратной формы имеет более благоприятное соотношение между миделем и поверхностью. Кроме того, более плоская форма такого купола при снижении приводит к усилению вихреобразования. В результате парашют с квадратным куполом имеет С п = 0,8 – 1,0. Еще большее значение коэффициента сопротивления у парашютов с втянутой вершиной купола или с куполами в форме вытянутого прямоугольника, так при соотношении сторон купола 3:1 С п = 1,5.


Скольжение, обусловливающееся формой купола парашюта, также увеличивает коэффициент сопротивления до 1,1 – 1,3. Это объясняется тем, что при скольжении купол обтекается воздухом не снизу вверх, а снизу сбоку. При таком обтекании купола скорость снижения как равнодействующая рав-на сумме составляющих вертикальной и горизонтальной, т.е. благодаря появлению горизонтального перемещения уменьшается вертикальное (рис.3).

увеличивается на 10 – 15%, но если количество строп больше, чем необходимо для данного парашюта, то уменьшается, так как при большом количестве строп входное отверстие купола перекрывается. Увеличение количества строп купола сверх 16 не вызывает заметного увеличения миделя; мидель купола с 8 стропами заметно меньше, чем мидель купола с 16 стропами

(рис. 4).


Количество строп купола определяется длиной его нижней кромки и расстоянием между стропами, которое у куполов основных парашютов равно 0,6 – 1 м. Исключением являются стабилизирующие и тормозные парашюты, у которых расстояние между двумя соседними стропами 0,05 – 0,2 м, в связи с тем, что длина нижней кромки их куполов относительно мала и невозможно прикрепить большое количество строп, необходимое для повышения прочности.


Зависимость С п от длины строп купола . Купол парашюта принимает форму и уравновешивается в том случае, если при определенной длине стропы нижняя кромка стягивается под действием силы Р. При уменьшении длины стропы угол между стропой и осью купола а увеличивается (а 1 > а) , стягивающая сила также увеличивается (Р 1 ). Под действием силы Р 1 кромка купола с короткими стропами сжимается, мидель купола становится меньше, чем мидель купола с длинными стропами (рис. 5). Уменьшение миделя приводит к уменьшению коэффициента С п, и равновесие купола нарушается. При зна-чительном укорочении строп купол принимает удобообтекаемую форму, частично наполненную воздухом, что приводит к уменьшению перепада давления и, следовательно, к до­полнительному уменьшению С п . Очевидно, можно рассчитать такую длину строп, при которой купол не сможет наполняться воздухом.


Увеличение длины строп повышает коэффициент сопротив­ления ку-пола С п и, следовательно, обеспечивает заданную ско­рость приземления или снижения при минимально возможной площади купола. Однако следует помнить, что увеличение дли­ны строп приводит к увеличению мас-сы парашюта.

Опытным путем установлено, что при увеличении длины строп в 2 раза коэффициент сопротивления купола увеличива­ется только в 1,23 раза. Следовательно, увеличивая длину строп в 2 раза, можно уменьшить площадь купола в 1,23 раза. На практике используют длину строп, равную 0,8 – 1,0 диаметра купола в раскрое, хотя расчеты показывают, что наибольшее значение С п достигает при длине строп, равной трем диамет­рам купола в раскрое.


Большое сопротивление – главное, но не единственное тре­бование, предъявляемое к парашюту. Форма купола должна обеспечивать быстрое и надежное его раскрытие, устойчивое, без раскачиваний, снижение. Кроме того, купол должен быть прочен и прост в изготовлении и эксплуатации. Все эти требо­вания находятся в противоречии. Например, купола с большим сопротивлением очень неустойчивы, и, наоборот, очень устойчи­вые купола имеют малое сопротивление. При конструировании эти требования учитывают в зависимости от назначения пара­шютных систем.


Работа десантной парашютной системы . По­следовательность работы десантной парашютной системы в на­чальный период определяется прежде всего скоростью полета самолета при десантировании.

Как известно, с ростом скорости растет нагрузка на купол парашюта. Это вызывает необходимость увеличивать прочность купола, как следствие, увеличивать массу парашюта и прини­мать защитные меры для уменьшения динамической нагрузки на тело парашютиста-десантника в момент раскрытия купола основного парашюта.


Работа десантной парашютной системы имеет следующие этапы:

I – снижение на стабилизирующей парашютной системе смомента отделения от самолета до введения основного парашюта в действие;

II выход строп из сот и купола из камеры основного парашюта;

III– наполнение купола основного парашюта воздухом;

IV – гашение скорости системы от конца третьего этапа до достижения системой установившейся скорости снижения.

Введение в действие парашютной системы начинается в момент отделения парашютиста от самолета с последовательным включением всех элементов парашютной системы.


Для упорядочения раскрытия и удобства укладки основного парашюта его помещают в парашютную камеру, она в свою очередь укладывается в ранец, который прикреплен к подвесной системе. Крепится десантная парашютная система на десантнике с помощью подвесной системы, которая позволяет удобно разместить уложенный парашют и равномерно распределить динамическую нагрузку на тело во время наполнения основного парашюта.


Серийные десантные парашютные системы рассчитаны на совершение прыжков из всех типов военно-транспортных самолетов на большой скорости полета. Основной парашют вводится в действие через несколько секунд после отделения десантника от самолета, что обеспечивает минимальную нагрузку, действующую на купол парашюта при его наполнении, и позволяет выйти из возмущенного потока воздуха. Эти требования определяют наличие в десантной системе стабилизирующего парашюта, который обеспечивает устойчивое движение и уменьшает начальную скорость снижения до оптимально необходимой.


При достижении заданной высоты или после установленного времени снижения стабилизирующий парашют с помощью специального устройства (звена ручного раскрытия или парашютного прибора) отсоединяется от ранца основного парашюта, увлекает за собой камеру основного парашюта с уложенным в нее основным парашютом и вводит его в действие. В таком положении купол парашюта наполняется без рывков, на допустимой скорости, чем обеспечивается его надежность в работе, а также снижается динамическая нагрузка.


Установившаяся скорость вертикального снижения системы постепенно уменьшается из-за увеличения плотности воздуха и в момент приземления достигает безопасной скорости.

Смотрите так же на Спецназ.орг.

Десантные войска в обязательном порядке проходят прыжковую подготовку еще на этапе обучения. Затем навыки прыжков с парашютом используются уже во время боевых действий или показательных выступлений. У прыжков есть особые правила: требования к парашютам, используемым самолетам, подготовке солдатов. Все эти требования необходимо знать десанту для безопасного полета и приземления.

Прыгать без подготовки десантник не может. Обучение – обязательный этап перед началом настоящих прыжков ВДВ, во время него происходит теоретическое обучение и прыжковая практика. Вся информация, которую рассказывают будущим десантникам во время подготовки, приведена ниже.

Самолеты для перевозки и десантирования

С каких самолетов прыгают десантники? Армия России на данный момент использует несколько самолётов для десантирования войск. Основной из них ИЛ-76, но используются и другие, летные машины:

  • АН-12;
  • МИ-6;
  • МИ-8.

ИЛ-76 остается предпочтительным, поскольку наиболее удобно оборудован для десантирования, обладает вместительным багажными отделением и хорошо сохраняет давление даже на больших высотах, если десанту нужно прыгнуть там. Его корпус герметичный, но на случай аварийных ситуаций отсек для десантников оборудован индивидуальными кислородными масками. Таким образом каждый парашютист не будет испытывать недостаток кислорода во время полета.

Самолет развивает скорости, примерно 300 км в час, а это оптимальный показатель для десантирования в военных условиях.

Высота прыжка

С какой высоты обычно прыгают с парашютом десантники? Высотность прыжка зависит от вида парашюта и самолета, который используется для десантирования. Рекомендуемая оптимальная высота десантирования – 800-1000 метров над землей. Этот показатель удобен в условиях боевых действий, поскольку на такой высоте самолет меньше подвергается обстрелу. При этом воздух не слишком разреженный, чтобы десантник высаживался.

С какой высоты обычно прыгают десантники в случае не учебных действий? Раскрытие парашюта Д-5 или Д-6 при высадке с ИЛ-76 происходит на высоте 600 метров. Обычное расстояние, необходимое для полного раскрытия – 200 метров. То есть, если высадка начинается с высоты 1200, то раскрытие произойдет на отметке 1000. Максимум, допустимый при высадке – 2000 метров.

Узнай: Возможна ли служба в армии США для россиян и других иностранцев

Более передовые модели парашютов позволяет начать высадку и с отметки в несколько тысяч метров. Так, современная модель Д-10 позволяет высаживаться на максимальной высоте не более 4000 м над землей. При этом минимально допустимый уровень для раскрытия – 200. Рекомендуется начинать раскрытие раньше, чтобы снизить вероятность травм и жесткой посадки.

Виды парашютов

С 1990-ых годов в России используются два основных типа десантных парашютов: Д-5 и Д-6. Первый является самым простым, не позволяет регулировать место высадки. Сколько строп у парашюта десантника? Зависит от модели. Строп в Д-5 28, концы закрепленные, из-за чего и нельзя регулировать направление полета. Длина строп – 9 метров. Вес одного комплекта – около 15 кг.

Более усовершенствованная модель Д-5 – это парашют десантника Д-6. В нем концы строп можно освобождать и перетягивать нити, регулируя направление полета. Чтобы повернуть налево, нужно натянуть стропы слева, для маневра на правую сторону – потянуть за нить справа. Площадь парашютного купола такая же, как и у Д-5 (83 квадратных метра). Вес у комплекта сниженный – всего 11 килограмм, он наиболее удобен для еще обучающихся, но уже тренированных десантников. За время обучения совершается около 5 прыжков (при экспресс-курсах), Д-6 рекомендуется выдавать после первого-второго. Стропил в комплекте 30, из них четыре позволяют управлять парашютом.

Для совсем новичков разработаны комплекты Д-10, это обновленная версия, которая лишь недавно поступившая в распоряжение армии. Стропил здесь больше: 26 основных и 24 дополнительных. Из 26 стоп 4 позволяют управлять системой, их длина – 7 метров, а оставшихся 22 – 4 метра. Получается, что всего 22 внешние дополнительные стропы и 24 внутренние дополнительные. Такое количество шнуров (все они изготовлены из капрона) позволяют максимально управлять полетом, корректировать курс при высадке. Площадь купола у Д-10 – целых 100 квадратных метров. При этом купол изготовлен в форме патиссона, удобной зеленой расцветки без рисунка, чтобы после приземления десантника его тяжелее было обнаружить.

Узнай: Когда в России отмечается день сухопутных войск

Правила высадки из самолета

Десантники высаживаются из салона в определенном порядке. В ИЛ-76 это происходит в несколько потоков. Для высадки существуют две боковых двери и рампа. При учебных действиях предпочитают пользоваться исключительно боковыми дверьми. Высадка может осуществляться:

  • в один поток из двух дверей (при минимуме личного состава);
  • в два потока из двух дверей (при среднем количестве десантников);
  • в три или четыре поток из двух дверей (при масштабных учебных действиях);
  • в два потока и с рампы, и с дверей (при боевых действиях).

Распределение на потоки делается для того, чтобы прыгающие не столкнулись друг с другом при приземлении и не могли зацепиться. Между потоками делается небольшая задержка, обычно несколько десятков секунд.

Механизм полета и раскрытия парашюта

После высадки десантник должен высчитать 5 секунд. Нельзя считать стандартным методом: «1, 2, 3…». Получится слишком быстро, реальные 5 секунд еще не пройдут. Лучше отсчитывать так: «121, 122…». Сейчас наиболее часто используют счет начиная с 500: «501, 502, 503…».

Сразу после прыжка автоматически раскрывается стабилизирующий парашют (стадии его раскрытия можно увидеть на видео). Это небольшой купол, который не позволяет десантнику начать «кружиться» во время падения. Стабилизация предотвращает перевороты в воздухе, при которых человек начинает лететь вверх ногами (такая позиция не позволяет раскрыть парашют).

Через пять секунд стабилизация полностью выводится, и в действие нужно привести основной купол. Делается это либо при помощи кольца, либо автоматически. Хороший десантник должен уметь сам регулировать раскрытие парашюта, поэтому тренированным обучающимся дают комплекты с кольцом. После задействования кольца основной купол полностью раскрывается за 200 метров падения. В обязанности тренированного парашютиста десантника входит и маскировка после приземления.

Узнай: Морская пехота СССР, как появились в армии морпехи

Правила безопасности: как оградить десант от травм

Парашюты требуют особого отношения, ухода, чтобы прыжки с их использованием происходили максимально безопасно. Сразу после использования парашют нужно правильно сложить, иначе срок его эксплуатации резко сократиться. Неправильно сложенный парашют может не сработать при высадке, что приведет к летальному исходу.

В истории изобретений сложно найти более интернационального продукта, чем парашют. Идея, высказанная впервые, как предполагают, итальянцем Леонардо да Винчи в XV в., была реализована французами в XVIII в., доработана англичанами в XIX в. и усовершенствована российским изобретателем в начале XX в.

Первоначальной задачей являлось безопасное приземление человека (например, при прыжке из корзины воздушного шара). Модели того времени не отличались широким разнообразием видов. Продолжавшееся до 1970-х гг. совершенствование конструкции и используемых материалов, привело к дифференциации парашютов на две большие группы: круглые и «крыло». Самые используемые в профессиональном парашютизме относятся к группе крыла.

Виды парашютов по цели использования

В соответствии с назначением выделают следующие виды:

  • для десантирования грузов;
  • для решения вспомогательных задач;
  • для десантирования людей.

Тормозной парашют имеет давнюю историю. Он был разработан в начале ХХ в. российским конструктором, и изначально предназначался для торможения автомобилей. В таком виде идея не прижилась, но в конце 1930-х гг. она начинает внедряться в авиации.

Сегодня тормозной парашют входит в комплекс тормозной системы истребителей, которые имеют большую посадочную скорость и короткую посадочную дистанцию, например, на военных кораблях. При заходе на ВПП у таких воздушных судов из хвостовой части фюзеляжа выбрасывается один тормозной парашют с одним или несколькими куполами. Его использование позволяет сократить тормозной путь на 30%. Кроме того, тормозной парашют используется при посадках космических челленджеров.

Гражданские самолеты не применяют такой способ торможения, т. к. в момент выброса купола транспортное средство и люди в нем испытывают значительную перегрузку.

Для приземления грузов, выбрасываемых из самолетов, используют специальные парашютные системы, состоящие из одного или нескольких куполов. В случае необходимости такие системы могут комплектоваться реактивными двигателями, придающими дополнительный тормозящий импульс перед непосредственным контактом с землей. Подобные парашютные системы используются также при спуске космических аппаратов на землю. К парашютам вспомогательных задач относятся те, которые являются составными частями парашютных систем:

  • вытяжные, которые вытягивают основной или запасной купол;
  • стабилизирующие, которые, помимо вытягивая, обладают функцией стабилизации десантируемого объекта;
  • поддерживающие, которые обеспечивают правильный процесс раскрытия другого парашюта.

Большая часть парашютных систем существует для десантирования людей.

Виды парашютов для десантирования людей

Для безопасного приземления людей применяются следующие типы парашютов:

  • тренировочные;
  • спасательные;
  • спец назначения;
  • десантные;
  • планирующие оболочковые парашютные системы (спортивные).

Основными видами являются планирующие оболочковые парашютные системы («крыло») и десантные (круглые) парашюты.

Десантные

Армейские парашюты бывают 2 видов: круглые и квадратные.

Купол круглого десантного парашюта представляют собой многоугольник, который при наполнении его воздухом приобретает форму полусферы. Купол имеет вырез (или менее плотную ткань) в центре. Круглые десантные парашютные системы (напр., Д-5, Д-6, Д-10) имеют следующие высотные характеристики:

  • максимальная высота выброски – 8 км.
  • обычная рабочая высота – 800-1200 м.
  • минимальная высота выброски – 200 м со стабилизацией 3 с и снижении на наполненном куполе не менее 10 с.

Круглые десантные парашюты плохо управляемы. Имеют примерно одинаковую вертикальную и горизонтальную скорость (5 м/с). Масса:

  • 13,8 кг (Д-5);
  • 11,5 кг (Д-6);
  • 11,7 (Д-10).

Квадратные парашюты (напр., российский «Листик» Д-12, американский Т-11) имеют дополнительные прорези в куполе, что наделяет их лучшей маневренностью, позволяет парашютисту контролировать горизонтальное перемещение. Скорость снижения – до 4 м/с. Горизонтальная скорость – до 5 м/с.

Тренировочные

Тренировочные парашюты используются как промежуточные для перехода от десантного к спортивному. Они, так же как и десантные, имеют круглые купола, но снабжены дополнительными прорезями и клапанами, позволяющими парашютисту влиять на горизонтальное перемещение и тренировать точность посадки.

Наиболее популярный тренировочный вариант – Д-1-5У. Именно его используют при совершении первых самостоятельных прыжков в парашютных клубах. При натяжении одной из строп управления эта модель делает полный разворот на 360° C за 18 с. Он хорошо управляем.

Средние скорости снижения (м/с):

  • горизонтальная – 2,47;
  • вертикальная – 5,11.

Минимальная высота выброса с Д-1-5У – 150 м при немедленном раскрытии. Максимальная высота выброса – 2200 м. Другие тренировочные модели: П1-У; Т-4; УТ-15. Имея аналогичные с Д-1-5У характеристики, эти модели еще более маневренны: делают полный разворот за 5 с, 6,5 с и 12 с, соответственно. Кроме того, они примерно на 5 кг легче, чем Д-1-5У.

Спортивные

Планирующие оболочковые парашютные системы характеризуются наибольшим видовым разнообразием. Они могут быть классифицированы по форме крыла и по типу купола.

  • Классификация по форме крыла

Купола типа «крыло» могут иметь следующую форму:

  • прямоугольная;
  • полуэллиптическая;
  • эллиптическая.

Большинство крыльев имеет прямоугольную форму. Она обеспечивает простоту управления, предсказуемость поведения парашюта.

Чем более эллиптична форма купола, тем лучше становятся аэродинамические показатели парашюта, но тем менее он становится устойчив.

Эллиптичные конструкции характеризуются:

  • более высокой скоростью (горизонтальной и вертикальной);
  • коротким ходом строп управления;
  • большой потерей высоты при развороте.

Эллиптические купола – высокоскоростные модели, предназначенные для использования парашютистами с опытом более 500 прыжков.

  • Классификация по типу купола

Спортивные модификации подразделяются в соответствии с назначением купола на:

  • классические;
  • студенческие;
  • скоростные;
  • переходные;
  • тандемные.

Классические купола имеют большую площадь (до 28 м²), что делает их устойчивыми даже при сильном ветре. Их также называют точностными.

О тличительные черты:

  • мобильны в горизонтальной плоскости (развивают скорость до 10 м/с);
  • позволяют эффективно контролировать снижение;
  • используются для тренировки точности посадки.

Название «студенческий купол» говорит само за себя. Такие парашютные системы используются парашютистами с небольшим опытом прыжков. Они достаточно инертны, менее маневренны и, следовательно, более безопасны. По площади купола студенческий примерно соответствуют диапазону классического, но имеет 9 секций вместо 7. Купола для скоростных парашютов маленькие – до 21,4 м². Эти профессиональные модели отличаются «резвостью» и высокой маневренностью. Некоторые модели развивают горизонтальную скорость более 18 м/с. В среднем – 12-16 м/с. Используются подготовленными парашютистами.

Тандемные купола предназначены для десантирования 2 человек одновременно. Поэтому они имеют большую площадь, до 11 секций. Отличаются повышенной устойчивостью и прочностью конструкции. Переходные купола более инертны и медлительны, но достаточно быстры: могут развивать горизонтальную скорость до 14 м/с. Используются в качестве тренировочных перед осваиванием скоростных моделей. А планирующие оболочковые парашютные системы обозначаются литерами ПО (например, ПО-16, ПО-9).

Спасательные

Системы, предназначенные для аварийного десантирования из самолета, терпящего крушение, называются спасательными. Как правило, они имеют круглую форму купола (например, С-4, С-5). Но также бывают и квадратные (например, С-3-3).

Аварийная выброска может происходить при скорости до 1100 км/ч (С-5К) на высоте :

  • от 100 м до 12000 м (С-3-3);
  • от 70 до 4000 м (С-4У);
  • от 60 до 6000 м (С-4);
  • от 80 до 12000 м (С-5).

При выброске на очень большой высоте парашют разрешается открывать после прохождения отметки в 9000 м. Площадь куполов у спасательных моделей значительна и, например, у С-3-3 составляет 56,5 м. Спасательные системы, предназначенные для катапультирования на большой высоте, снабжаются кислородными приборами.

Запасные

Какие бы парашютные системы не использовались, запасной парашют является обязательной их частью. Он крепится на груди парашютиста и используется в качестве аварийного в случаях, если основной отказал или не смог раскрыться правильно. Запасной парашют обозначается литерами «З» или «ПЗ». Запасной парашют имеет большую площадь купола – до 50 м². Форма купола – круглая. Скорость вертикального спуска – от 5 до 8,5 м/с.

Различные типы аварийных систем совместимы с разными типами основных парашютов:

  • запасной парашют типа З-2 совместим с десантными и спасательными моделями Д-5, Д-1-5, С-3-3,С-4.
  • запасной парашют типа ПЗ-81 должен использоваться со спортивными вариантами типа ПО-9.
  • запасной парашют ПЗ-74 предназначен для использования с тренировочными моделями УТ-15 и Т-4.

Специального назначения

В эту группу включаются парашютные системы немассового использования. Они применяются в спасательных и военных операциях.

Парашюты для бейсджампинга

Основной купол для бейсджампинга – обычное прямоугольное «крыло». Как правило, изготавливаются из воздухонепроницаемого материала (ZP-0). Запасной парашют отсутствует: низкая высота прыжка делает его лишним.

При прыжках типа фрифол, когда бейсджампер сам раскрывает парашют, парашютная система требует большого вытяжного парашюта, тяги которого хватит на быстрое раскрытие основного купола. Прыжки типа ассист менее требовательны к величине вытяжного парашюта, т.к. вытягивание основного купола происходит «автоматически». В прыжках ролл овер используется только основной, уже распущенный, купол.

Предназначена для выполнения прыжков из транспортных самолетов и вертолетов десантниками всех специальностей с полным комплектом снаряжения (или без него), а также отдельными парашютистами или группами парашютистов.

Система (при общей полетной массе парашютиста 140 кг) обеспечивает:

надежную работу на высоте 200-8000 м со стабилизацией в течение 3 с при покидании самолета на скорости 38,9-111,1 м/с (140-400 км/ч) при введении в действие основного парашюта на высоте не более 5000 м, если общая полетная масса парашютиста 140 кг, и на высоте не более 2000 м, если общая полетная масса парашютиста 150 кг,
минимальную безопасную высоту при покидании горизонтально летящего самолета на скорости полета 38,9-111.1 м/с (140-400 км/ч) по прибору:
со стабилизацией 3 с - 200 м,
со стабилизацией 2 с - 150 м,
нейтральное положение купола основного парашюта при снижении, а также разворот в любую сторону на 180° за 15-25 с при наличии шнура блокировки свободных концов подвесной системы:
разворот в любую сторону на 180° за 29-60-с при снятии шнура блокировки и перетянутых свободных концах подвесной системы;
устойчивое снижение как на основном, так и на стабилизирующем парашюте:
прекращение снижения на стабилизирующем парашюте и введение в действие основного парашюта путем раскрытия двухконусного замка как самим парашютистом с помощью звена ручного раскрытия, так и прибором ППК-У-165АД (АД-ЗУ-Д-165):
надежность работы запасных парашютов типа 3-5 и 3-2 при неотходе стабилизирующего парашюта или несрабатывании десантной парашютной системы, а также при скорости снижения более 8.5 м/с в случае перехлестывания купола основного парашюта стропами;
подгонку подвесной системы на парашютистах, имеющих рост 1.5-1.9 м, в зимнем и летнем десантном оборудовании:
гашение купола основного парашюта в момент приземления (приводнения) при повышенных скоростях ветра у земли с помощью устройства для отсоединения правого свободного конца подвесной системы;
исключение отсоединения частей парашютной системы в течение всего процесса десантирования:
крепление грузового контейнера ГК-30 (ГК-ЗОУ);
удобное размещение парашютиста в самолете на штатном десантном оборудовании.
Купол основного парашюта 83м2, имеет форму круга с двумя щелями у нижней кромки.

1. камера стабилизирующего парашюта
2. стабилизирующий парашют
3. камера основного парашюта
4. основной парашют
5. ранец

Десантная парашютная система Д-6 серии 4 работает по каскадной схеме. Первым вступает в действие стабилизирующий парашют. Снижение на нем происходит до заданного на приборе ППК-У-165А-Д (АД-ЗУ-Д-165) времени. После срабатывания прибора стабилизирующий парашют извлекает камеру с основным парашютом из ранца. Конструкция парашютной системы Д-6 серии 4 предусматривает два способа введения в действие купола основного парашюта при нормально работающем стабилизирующем парашюте: прибором ППК-У-165А-Д (АД-ЗУ-Д-165) или звеном ручного раскрытия. При отделении парашютиста от самолета (вертолета) из камеры вытягивается и вводится в действие стабилизирующий парашют.

В момент наполнения купола стабилизирующего парашюта звено натягивается и выдергивает гибкую шпильку из прибора ППК-У-165А-Д (АД-ЗУ-Д-165), которая соединена со звеном при помощи фала длиной 0,36 м.

После наполнения купола стабилизирующего парашюта происходит стабилизированное снижение парашютиста. При этом ранец основного парашюта остается закрытым. Прекращение стабилизированного снижения, освобождение клапанов ранца и введение в действие основного парашюта осуществляется после раскрытия двухконусного замка ручным способом (с помощью звена ручного раскрытия) или прибором ППК-У-165А-Д (АД-ЗУ-Д-165), в результате чего стабилизирующий парашют вытягивает из ранца камеру с уложенным в нее основным парашютом. По мере снижения парашютиста камера основного парашюта удаляется от него и из ее сот равномерно выходят стропы основного парашюта.

При полном натяжении строп происходит расчековка съемных резиновых сот камеры и из нее начинает выходить нижняя свободная часть купола основного парашюта длиной 0.2 м, не зажатая эластичным кольцом. По мере удаления от парашютиста стабилизирующего парашюта с камерой основного парашюта из камеры равномерно выходит остальная часть купола до полного натяжения всей системы.

Наполнение купола основного парашюта начинается после выхода его из камеры примерно наполовину и завершается после полного стягивания с него камеры.

Основной парашют предназначен для безопасного снижения и приземления парашютиста (рис. 8) и состоит из основы купола и строп.

Основа купола площадью 83 м 2 практически имеет форму круга, состоящего из четырех секторов и накладки.

Каждый сектор изготовлен из ткани артикула 56011П. В центре основы купола нашита накладка, изготовленная из ткани артикула 56006П в одно сложение.

Рис. 8. Основной парашют

1 - стропа 15Б; 2 - стропа 15А; 3 - секторы купола; 4 - накладка; 5 - клинья полотнища купола; 6 - каркас; 7 - петля-уздечка; 8 - стропа 1Б; 9 - стропа 1А; 10 - лента стягивающая; 11 - петля для строп; а - маркировка

Секторы соединяются между собой швом взамок. На швы, соединяющие секторы купола, настрочены ленты ЛТКП-13- 70.

Нижняя кромка купола образована подгибкой ткани на внешнюю сторону и усилена настроченной на нее с двух сторон лентой ЛТКП-15- 185. Для увеличения прочности купола с его внешней стороны настрочены лепты ЛТКП-13-70, которые, пересекаясь, образуют каркас на поверхности купола, а у нижней кромки - тридцать петель для крепления строп.

По нижней кромке купола у всех строп, кроме строп 1А, 1Б, 15А и 15Б, нашиты стягивающие ленты из ЛТКП-15-185 для уменьшения случаев перехлестывания купола стропами и уменьшения времени наполнения его.

На полюсную часть купола нашита лента-уздечка и ЛТКП-26- 600, предназначенная для присоединения петли звена стабилизирующей системы.

На основе купола, между стропами 1А и 1Б, 15А и 15Б, имеются щели длиной 1,6 м, начинающиеся от нижней кромки и предназначенные для разворота купола при снижении.

Купол имеет 30 строп, из которых 27 изготовлены из шнура ШКП-150, а три стропы - 1А, 1Б и 28 - для облегчения контроля укладки купола изготовлены из шнура ШКПкр-190 зеленого цвета.

Стропы одним концом привязаны к петлям купола, другим - к пряжкам-полукольцам 1-ОСТ 1 12002-77 свободных концов подвесной системы. Концы строп застрочены зигзагообразной строчкой.

Для облегчения укладки основного парашюта на стропе 14 у нижней кромки купола и у пряжки-полукольца подвесной системы нашиты опознавательные муфты, изготовленные из хлопчатобумажной ткани оранжевого цвета.

Длина строп в свободном состоянии от нижней кромки купола до полуколец свободных концов подвесной системы равна 9 м. Для облегчения укладки строп па них нанесены метки на расстоянии 0,2 м от нижней кромки купола и 0,4 м - от пряжек-полуколец свободных концов, обозначающие начало и конец укладки.

По нижней кромке купола, слева от строп, указаны их порядковые номера. На куполе с внешней стороны между стропами 1А и 28 имеется заводская маркировка.

На стропы 1А и 15А, 1Б и 15Б нашиты стропы управления.

Стропы управления предназначены для разворота купола парашюта и изготовлены из шнура ШКПкр-190 в два сложения красного или оранжевого цвета.

Стропы управления (рис. 9) продеты через кольца, нашитые с внутренней стороны свободных концов подвесной системы.

Рис. 9. Парашют основной в действии

1 - стропа 1А; 2 - стропа 15А; 3 - стропа 15Б; 4 - стропа 1Б; 5 - пряжка-полукольцо; 6 - свободные концы подвесной системы; 7 - стропы управления; 8 - кольца; А - вид сзади

Один конец левой стропы управления пристрочен к стропе 15А на расстоянии 1,45 м, второй - к стропе 1А на расстоянии 1,25 м от пряжек-полуколец подвесной системы.

Один конец правой стропы управления пристрочен к стропе 15Б на расстоянии 1,45 м, второй - к стропе 1Б на расстоянии 1,25 м от пряжек-полуколец подвесной системы.

При натяжении правой стропы управления натягиваются стропы 1Б и 15Б, втягивая внутрь нижнюю кромку купола. Купол поворачивается вправо. При натяжении левой стропы управления натягиваются стропы 15А и 1А, втягивая внутрь нижнюю кромку купола. Купол поворачивается влево.

Масса основного парашюта - 5,5 кг.