Альдегиды. Общая характеристика. Методы получения. Физические и химические свойства альдегидов

(для простейшего альдегида R=H)

Классификация альдегидов

По строению углеводородного радикала:

Предельные; например:



Непредельные; например:

Ароматические; например:



Алициклические; например:


Общая формула предельных альдегидов

Гомологический ряд, изомерия, номенклатура

Альдегиды изомерны другому классу соединений - кетонам


например:




Альдегиды и кетоны содержат карбонильную группу ˃C=O, поэтому называются карбонильными соединениями.

Электронное строение молекул альдегидов

Атом углерода альдегидной группы находится в состоянии sp 2 -гибридизации, поэтому все σ-связи в этой группе располагаются в одной плоскости. Облака р-электронов, образующих π-связь, перпендикулярны этой плоскости и легко смещаются к более электроотрицательному атому кислорода. Поэтому двойная связь C=O (в отличие от двойной связи C=C в алкенах) сильно поляризована.

Физические свойства


Химические свойства

Альдегиды - реакционноспособные соединения, вступающие в многочисленные реакции. Наиболее характерны для альдегидов:


а) реакции присоединения по карбонильной группе; реагенты типа НХ присоединяются следующим образом:



б) реакции окисления связи C-H альдегидной группы, в результате которых образуются карбоновые кислоты:

I. Реакции присоединения

1. Гидрирование (образуются первичные спирты



2. Присоединение спиртов (образуются полуацетали и ацетали)



В избытке спирта в присутствии HCl полуацетали превращаются в ацетали:



II. Реакции окисления

1. Реакция «серебряного зеркала»



Упрощённо:



Эта реакция является качественной реакцией на альдегидную группу (на стенках реакционного сосуда образуется зеркальный налет металлического серебра).


2. Реакция с гидроксидом меди (II)



Эта реакция также является качественной реакцией на альдегидную групп у (выпадает красный осадок Сu 2 O).


Формальдегид окисляется различными O-содержащими окислителями сначала до муравьиной кислоты и далее - до Н 2 СO 3 (СO 2 + Н 2 O):



III. Реакции ди-, три- и полимеризации

1. Альдольная конденсация



2. Тримеризация ацетальдегида



3. Полимеризация формальдегида

При длительном хранении формалина (40%-ный водный раствор формальдегида) в нем происходит полимеризация с образованием белого осадка параформа:



IV. Реакция поликонденсации формальдегида с фенолом

Строение альдегидов и кетонов

Альдегиды - органические вещества, молеку­лы которых содержат карбонильную группу :

соединенную с атомом водорода и углеводородным радикалом. Общая формула альдегидов имеет вид:

В простейшем альдегиде - роль углеводородного радикала играет другой атом водорода:


Формальдегид

Карбонильную группу, связанную с атомом во­дорода, часто называют альдегидной :

Кетоны - органические вещества, в молеку­лах которых карбонильная группа связана с двумя углеводородными радикалами. Очевидно, общая формула кетонов имеет вид:

Карбонильную группу кетонов называют кето-группой .

В простейшем кетоне - ацетоне - карбониль­ная группа связана с двумя метильными радика­лами:

Номенклатура и изомерия альдегидов и кетонов

В зависимости от строения углеводородного ра­дикала, связанного с альдегидной группой, различают предельные, непредельные, ароматические, гетероциклические и другие альдегиды :


В соответствии с номенклатурой ИЮПАК на­звания предельных альдегидов образуются от на­звания алкана с тем же числом атомов углерода с молекуле с помощью суффикса -аль . Например:


Нумерацию атомов углерода главной цепи на­чинают с атома углерода альдегидной группы. По­этому альдегидная группа всегда располагается при первом атоме углерода, и указывать ее поло­жение нет необходимости.

Наряду с систематической номенклатурой ис­пользуют и тривиальные названия широко приме­няемых альдегидов. Эти названия, как правило, образованы от названий карбоновых кислот, соот­ветствующих альдегидам.

Для названия кетонов по систематической но­менклатуре кетогруппу обозначают суффиксом -он и цифрой, которая указывает номер атома углеро­да карбонильной группы (нумерацию следует на­чинать от ближайшего к кетогруппе конца цепи).

Например:

Для альдегидов характерен только один вид структурной изомерии - изомерия углеродно­го скелета , которая возможна с бутаналя, а для кетонов - также и изомерия положения карбо­нильной группы . Кроме этого, для них характер­на и межклассовая изомерия (пропаналь и пропанон).

Физические свойства альдегидов и кетонов

В молекуле альдегида или кетона вследствие большей электроотрицательности атома кислоро­да по сравнению с углеродным атомом связь С=O сильно поляризована за счет смещения электрон­ной плотности π-связи к кислороду:

Альдегиды и кетоны - полярные вещества с избыточной электронной плотностью на атоме кислорода . Низшие члены ряда альдегидов и ке­тонов (формальдегид, уксусный альдегид, ацетон) растворимы в воде неограниченно. Их температу­ры кипения ниже, чем у соответствующих спир­тов. Это связано с тем, что в молекулах альдегидов и кетонов в отличие от спиртов нет подвижных атомов водорода и они не образуют ассоциатов за счет водородных связей.

Низшие альдегиды име­ют резкий запах; у альдегидов, содержащих от четырех до шести атомов углерода в цепи, непри­ятный запах; высшие альдегиды и кетоны обла­дают цветочными запахами и применяются в пар­фюмерии.

Наличие альдегидной группы в молекуле опре­деляет характерные свойства альдегидов.

Реакции восстановления.

1. Присоединение водорода к молекулам альде­гидов происходит по двойной связи в карбониль­ной группе:

Продуктом гидрирования альдегидов являются первичные спирты, кетонов - вторичные спирты.

Так, при гидрировании уксусного альдегида на никелевом катализаторе образуется этиловый спирт, при гидрировании ацетона - пропанол-2.

2. Гидрирование альдегидов - реакция восста­новления, при которой понижается степень окис­ления атома углерода, входящего в карбонильную группу.

Реакции окисления.

Альдегиды способны не только восстанавливаться, но и окисляться. При окислении альдегиды образуют карбоновые кисло­ты. Схематично этот процесс можно представить так:

1. Окисление кислородом воздуха. Например, из пропионового альдегида (пропаналя) образуется пропионовая кислота:

2. Окисление слабыми окислителями (аммиач­ный раствор оксида серебра). В упрощенном виде этот процесс можно выразить уравнением реак­ции:

Например:

Более точно этот процесс отражают уравнения:

Если поверхность сосуда, в котором проводит­ся реакция, была предварительно обезжирена, то образующееся в ходе реакции серебро покрывает ее ровной тонкой пленкой. Поэтому эту реакцию называют реакцией «серебряного зеркала». Ее ши­роко используют для изготовления зеркал, сереб­рения украшений и елочных игрушек.

3. Окисление свежеосажденным гидроксидом меди (II). Окисляя альдегид, Cu 2+ восстанавливает­ся до Cu + . Образующийся в ходе реакции гидрок­сид меди (I) CuOH сразу разлагается на оксид ме­ди (I) красного цвета и воду.

Эта реакция, так же как и реакция «серебряно­го зеркала », используется для обнаружения альде­гидов.

Кетоны не окисляются ни кислородом воздуха, ни таким слабым окислителем, как аммиачный раствор оксида серебра.

Химические свойства альдегидов и кислот - конспект

Отдельные представители альдегидов и их значение

Формальдегид (метаналь, муравьиный альдегид HCHO) - бесцветный газ с резким запахом и тем­пературой кипения -21 °С, хорошо растворим в во­де. Формальдегид ядовит! Раствор формальдегида в воде (40 %) называют фор­малином и применяют для формальдегид и уксусной дезинфекции. В сельском хозяйстве формалин использу­ют для протравливания семян, в кожевенной промышленности - для обра­ботки кож. Формальдегид используют для получе­ния уротропина - лекарственного вещества. Иногда спрессованный в виде брикетов уротропин применя­ют в качестве горючего (сухой спирт). Большое ко­личество формальдегида расходуется при получении фенолформальдегидных смол и некоторых других веществ.

Уксусный альдегид (этаналь, ацетальдегид CH 3 CHO) - жидкость с резким, неприятным за­пахом и температурой кипения 21 °С, хорошо рас­творим в воде. Из уксусного альдегида в промыш­ленных масштабах получают уксусную кислоту и ряд других веществ, он используется для произ­водства различных пластмасс и ацетатного волок­на. Уксусный альдегид ядовит !

Группа атомов -

Называется карбоксиль­ной группой , или карбоксилом.

Органические кислоты, содержащие в молеку­ле одну карбоксильную группу, являются одноос­новными .

Общая формула этих кислот RCOOH, например:

Карбоновые кислоты, содержащие две кар­боксильные группы, называются двухосновными . К ним относятся, например, щавелевая и янтар­ная кислоты:

Существуют и многоосновные карбоновые кис­лоты, содержащие более двух карбоксильных групп. К ним относится, например, трехосновная лимонная кислота:

В зависимости от природы углеводородного ра­дикала карбоновые кислоты делятся на предель­ные, непредельные, ароматические .

Предельными , или насыщенными, карбоновы­ми кислотами являются, например, пропановая (пропионовая) кислота:

или уже знакомая нам янтарная кислота.

Очевидно, что предельные карбоновые кислоты не содержат π-связей в углеводородном радикале.

В молекулах непредельных карбоновых кислот карбоксильная группа связана с ненасыщенным, не­предельным углеводородным радикалом, например, в молекулах акриловой (пропеновой)

СН 2 =СН-СООН

или олеиновой

СН 3 -(СН 2) 7 -СН=СН-(СН 2) 7 -СООН

и других кислот.

Как видно из формулы бензойной кислоты, она является ароматической , так как содержит в моле­куле ароматическое (бензольное) кольцо:

Название карбоновой кислоты образуется от на­звания соответствующего алкана (алкана с тем же числом атомов углерода в молекуле) с добавлени­ем суффикса -ов , окончания -ая и слова кислота . Нумерация атомов углерода начинается с карбок­сильной группы . Например:

Количество карбоксильных групп указывается в названии префиксами ди-, три-, тетра- :

Многие кислоты имеют и исторически сложив­шиеся, или тривиальные, названия.

Состав предельных одноосновных карбоновых кислот будет выражаться общей формулой С n Н 2n O 2 , или С n Н 2n+1 СOOН , или RСООН .

Физические свойства карбоновых кислот

Низшие кислоты, т. е. кислоты с относитель­но небольшой молекулярной массой, содержащие в молекуле до четырех атомов углерода, - жидко­сти с характерным резким запахом (например, за­пах уксусной кислоты). Кислоты, содержащие от 4 до 9 атомов углерода, - вязкие маслянистые жид­кости с неприятным запахом; содержащие более 9 атомов углерода в молекуле - твердые вещества, которые не растворяются в воде. Температуры ки­пения предельных одноосновных карбоновых кис­лот увеличиваются с ростом числа атомов углерода в молекуле и, следовательно, с ростом относитель­ной молекулярной массы. Так, температура кипе­ния муравьиной кислоты равна 100,8 °С, уксус­ной - 118 °С, пропионовой - 141 °С.

Простейшая карбоновая кислота - муравьиная НСООН, имея небольшую относительную молеку­лярную массу (М r (НСООН) = 46), при обычных уcловиях является жидкостью с температурой кипе­ния 100,8 °С. В то же время бутан (M r (C 4 H 10) = 58) в тех же условиях газообразен и имеет температу­ру кипения -0,5 °С. Это несоответствие темпера­тур кипения и относительных молекулярных масс объясняется образованием димеров карбоновых кислот , в которых две молекулы кислоты связаны двумя водородными связями :

Возникновение водородных связей становится понятным при рассмотрении строения молекул карбоновых кислот.

Молекулы предельных одноосновных карбоно­вых кислот содержат полярную группу атомов - карбоксил

И практически неполярный углеводородный радикал . Карбоксильная группа притягивается молекулами воды, образуя с ними водородные связи:

Муравьиная и уксусная кислоты растворимы в воде неограниченно. Очевидно, что с увеличени­ем числа атомов в углеводородном радикале рас­творимость карбоновых кислот снижается.

Химические свойства карбоновых кислот

Общие свойства, характерные для класса кислот (как органических, так и неорганических), обусловлены наличием в молекулах гидроксильной группы, содержащей сильную полярную связь между атома­ми водорода и кислорода. Рассмотрим эти свойства на примере растворимых в воде органических кислот.

1. Диссоциация с образованием катионов водо­рода и анионов кислотного остатка:

Более точно этот процесс описывает уравнение, учитывающее участие в нем молекул воды:

Равновесие диссоциации карбоновых кислот смещено влево; подавляющее большинство их - слабые электролиты. Тем не менее, кислый вкус, например, уксусной и муравьиной кислот объяс­няется диссоциацией на катионы водорода и анио­ны кислотных остатков.

Очевидно, что присутствием в молекулах кар­боновых кислот «кислого» водорода, т. е. водорода карбоксильной группы, обусловлены и другие ха­рактерные свойства.

2. Взаимодействие с металлами , стоящими в электрохимическом ряду напряжений до водо­рода:

Так, железо восстанавливает водород из уксус­ной кислоты:

3. Взаимодействие с основными оксидами с об­разованием соли и воды:

4. Взаимодействие с гидроксидами металлов с образованием соли и воды (реакция нейтрализации):

5. Взаимодействие с солями более слабых кис­лот с образованием последних. Так, уксусная кис­лота вытесняет стеариновую из стеарата натрия и угольную из карбоната калия:

6. Взаимодействие карбоновых кислот со спир­тами с образованием сложных эфиров - реакция этерификации (одна из наиболее важных реакций, характерных для карбоновых кислот):

Взаимодействие карбоновых кислот со спирта­ми катализируется катионами водорода.

Реакция этерификации обратима. Равновесие смещается в сторону образования сложного эфира в присутствии водоотнимающих средств и при уда­лении эфира из реакционной смеси.

В реакции, обратной этерификации, которая называется гидролизом сложного эфира (взаимо­действие сложного эфира с водой), образуются кислота и спирт:

Очевидно, что реагировать с карбоновыми кис­лотами, т. е. вступать в реакцию этерификации, могут и многоатомные спирты, например, глице­рин:

Все карбоновые кислоты (кроме муравьиной) наряду с карбоксильной группой содержат в моле­кулах углеводородный остаток. Безусловно, это не может не сказаться на свойствах кислот, которые определяются характером углеводородного остат­ка.

7. Реакции присоединения по кратной связи - в них вступают непредельные карбоновые кислоты. Например, реакция присоединения водорода - ги­дрирование. Для кислоты, содержащей в радикале одну л-связь, можно записать уравнение в общем виде:

Так, при гидрировании олеиновой кислоты об­разуется предельная стеариновая кислота:

Непредельные карбоновые кислоты, как и дру­гие ненасыщенные соединения, присоединяют галогены по двойной связи. Так, например, акрило­вая кислота обесцвечивает бромную воду:

8. Реакции замещения (с галогенами) - в них способны вступать предельные карбоновые кисло­ты. Например, при взаимодействии уксусной кис­лоты с хлором могут быть получены различные хлорпроизводные кислоты:

Химические свойства карбоновый кислот - конспект

Отдельные представители карбоновых кислот и их значение

Муравьиная (метановая) кислота HCOOH - жидкость с резким запахом и темпе­ратурой кипения 100,8 °C, хорошо растворима в воде.

Муравьиная кислота ядови­та, при попадании на кожу вызывает ожоги! Жалящая жидкость, выделяемая мура­вьями, содержит эту кислоту.

Муравьиная кислота обладает дезинфицирующим свойством и поэтому находит свое применение в пищевой, кожевенной и фармацевтической промышленностях, медицине. Она ис­пользуется при крашении тканей и бумаги.

Уксусная (этановая) кислота CH 3 COOH - бес­цветная жидкость с характерным резким запа­хом, смешивается с водой в любых отношениях. Водные растворы уксусной кислоты поступают в продажу под названием уксуса (3-5 % -й раствор) и уксусной эссенции (70-80 %-й раствор) и широ­ко используются в пищевой промышленности. Ук­сусная кислота - хороший растворитель многих органических веществ и поэтому используется при крашении, в кожевенном производстве, в лакокра­сочной промышленности. Кроме этого, уксусная кислота является сырьем для получения многих важных в техническом отношении органических соединений: например, на ее основе получают ве­щества, используемые для борьбы с сорняками, - гербициды. Уксусная кислота является основным компонентом винного уксуса, характерный запах которого обусловлен именно ею. Она продукт окис­ления этанола и образуется из него при хранении вина на воздухе.

Важнейшими представителями высших пре­дельных одноосновных кислот являются пальми­тиновая C 15 H 31 COOH и стеариновая C 17 H 35 COOH кислоты . В отличие от низших кислот эти веще­ства твердые, плохо растворимы в воде.

Однако их соли - стеараты и пальмитаты - хо­рошо растворимы и обладают моющим действием, поэтому их еще называют мылами. Понятно, что эти вещества производят в больших масштабах.

Из непредельных высших карбоновых кислот наибольшее значение имеет олеиновая кислота C 17 H 33 COOH, или CH 3 - (CH 2) 7 - CH = CH -(CH 2) 7 COOH. Это маслоподобная жидкость без вкуса и запаха. Широкое применение в технике находят ее соли.

Простейшим представителем двухосновных карбоновых кислот является щавелевая (этандиовая) кислота HOOC-COOH, соли которой встре­чаются во многих растениях, например в щавеле и кислице. Щавелевая кислота - это бесцветное кристаллическое вещество, хорошо растворяет­ся в воде. Она применяется при полировке ме­таллов, в деревообрабатывающей и кожевенной промышленностях.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Альдегидами называются органические соединения, в которых карбонильная группа (С-О) связана с водородом и радикалом R (остатки алифатических, ароматических и гетероциклических соединений):

Полярность карбонильной группы обеспечивает полярность молекулы в целом, поэтому альдегиды имеют более высокие температуры кипения, чем неполярные соединения сравнимой молекулярной массы.

Поскольку атомы водорода в альдегидах связаны только с атомом углерода (близкие относительные электроотрицательности), межмолекулярные водородные связи не образуются. Поэтому температуры кипения альдегидов ниже, чем у соответствующих спиртов или карбоновых кислот. В качестве примера можно сравнить температуры кипения метанола (Т^ 65 °С), муравьиной кислоты (Гкип 101 °С) и формальдегида (7^, -21 °С).

Низшие альдегиды растворимы в воде, вероятно, вследствие образования водородных связей между молекулами растворенного вещества и растворителя. Высшие альдегиды хорошо растворяются в большинстве обычных органических растворителей (спирты, эфиры). Низшие альдегиды имеют резкий запах, у альдегидов с С3-С6 весьма неприятный запах, в то время как высшие альдегиды обладают цветочными запахами и применяются в парфюмерии.

В химическом отношении альдегиды - весьма реакционноспособные соединения. Наиболее характерны для альдегидов реакции нуклеофильного присоединения, что обусловлено присутствием в молекуле электрофильного центра - карбонильного атома углерода группы С=0.

Многие из этих реакций, например, образование оксимов, семикарбазонов и других соединений, используются в качественном и количественном анализе ЛС из группы альдегидов потому, что продукты присоединения альдегидов характеризуются определенной для каждого альдегида температурой плавления. Так, альдегиды при встряхивании с насыщенным раствором гидросульфита натрия легко вступают в реакцию присоединения:

Продукты присоединения представляют собой соли, имеющие определенную температуру плавления, хорошо растворимы в воде, но не растворимы в органических растворителях.

При нагревании с разбавленными кислотами гидросульфитные производные гидролизуются до исходных соединений.

Способностью альдегидов образовывать гидросульфитные производные пользуются как для определения подлинности препарата с альдегидной группой в молекуле, так и для очистки альдегидов и выделения их из смесей с другими веществами, не реагирующими с гидросульфитом натрия.


Альдегиды также легко присоединяют аммиак и другие азотсодержащие нуклеофилы. Продукты присоединения обычно малоустойчивы и легко подвергаются дегидратации и полимеризации. Образующиеся в результате полимеризации циклические соединения при нагревании с разбавленными кислотами легко разлагаются, вновь освобождая альдегид:
r-ch-nh2 г з -NH R-СС
-зн2о "
он

Альдегиды легко окисляются. Оксид серебра(І) и другие окислители с невысоким значением окислительного потенциала способны окислять альдегиды. Например, для альдегидов характерна реакция образования серебряного зеркала, которая протекает с аммиачным раствором AgN03:

AgN03 + 3NH3 - OH + NH4N03

Реактив Толленса

При этом на стенках пробирки образуется зеркальный налет металлического серебра:

2OH + RCOH 2Agi + RCOOH + 4NH3T + Н20

Аналогично альдегиды могут восстанавливать медь(П) до меди(1). Для проведения реакции к раствору альдегида добавляют реактив Фелинга (щелочной раствор тартратного комплекса меди(П)) и нагревают. Сначала образуется желтый осадок гидроксида меди(1) - СиОН, а затем красный - оксида меди(1) - Си20:

2KNa + RCOH + 3NaOH + 2КОН -

2CuOHi + RCOONa + 4KNaC4H406 + 2H20 2CuOH - Cu20 + H20

К окислительно-восстановительным относится также реакция взаимодействия альдегидов с реактивом Несслера в щелочной среде; при этом выпадает темный осадок восстановленной ртути:

K2 + RCOH + ЗКОН - RCOOK + 4KI + Hgl + 2Н20

Следует иметь в виду, что реакция с реактивом Несслера более чувствительна, поэтому ее используют для обнаружения примесей альдегидов в ЛС. Подлинность лекарственных средств, содержащих альдегидную группу, подтверждают менее чувствительными реакциями: серебряного зеркала или с реактивом Фелинга. Некоторые другие соединения, например полифенолы, также окисляются соединениями Ag(I) и Си(П), т.е. реакция не является специфической.


Формальдегид и уксусный альдегид склонны к полимеризации. Формальдегид полимеризуется, образуя циклические тримеры, тетрамеры или линейные полимеры. Реакция полимеризации протекает в результате нуклеофильной атаки кислорода одной молекулы карбонильного атома углерода другой:

Так, из 40 % водного раствора формальдегида (формалина) образуется линейный полимер - параформ (и = 8 - 12), тример и тетрамер.

Для альдегидов характерны наркотические и дезинфицирующие свойства. По сравнению со спиртами альдегидная группа усиливает токсичность вещества. Введение галогена в молекулу альдегида повышает его наркотические свойства. Например, наркотические свойства хлораля более выражены, чем у уксусного альдегида:

с!3с-сС

Получение. Альдегиды могут быть получены окислением первичных спиртов хромовой кислотой (Na2Cr04, H2S04) при кипячении или перманганатом калия в щелочной среде:

Дегидрирование первичных спиртов осуществляют над медным катализатором (Си, Сг203) при 300-400 °С.

Промышленное производство метаналя основано на парофазном окислении метанола с железомолибденовым катализатором:

2СН3ОН + 02 500 ~600 2СН2=0 + Н20

Раствор формальдегида (формалин)

Получение. Формалин - это водный раствор формальдегида (40 %), стабилизированный метанолом (6-10 %). Европейская Фармакопея содержит ФС «Формальдегида раствор (35 %)» (см. табл. 9.1). В лабораторных условиях формальдегид может быть получен дегидрированием метанола над медью или деполимеризацией параформа.

Определение подлинности. Фармакопейный способ - реакция серебряного зеркала.

Поскольку формальдегид легко вступает в реакции конденсации, например, с гидроксилсодержащими ароматическими соединениями с образованием окрашенных соединений, ГФ рекомендует также использовать для его идентификации реакцию с салициловой кислотой, в результате которой появляется красное окрашивание:

H2S04
НО
соон

Аналогично протекает реакция с хромотроповой кислотой с образованием синефиолетовых и красно-фиолетовых продуктов (ЕФ).

Для определения подлинности фармальдегида могут быть использованы реакции с азотсодержащими нуклеофилами, например первичными аминами:

H-Ctf° + H2N-R - н-с^^К + Н20

Образующиеся N-замещенные имины (основания Шиффа) малорастворимы, некоторые из них окрашены, другие дают окрашенные соединения с ионами тяжелых металлов. ЕФ предлагает реакцию с фенилгидразином. В присутствии калия феррици- анида в кислой среде образуются продукты реакции интенсивно красного цвета.

Испытания на чистоту. Контроль примеси муравьиной кислоты осуществляют, определяя кислотность. Согласно ГФ, концентрация муравьиной кислоты в препарате не должна превышать 0,2 %; устанавливают содержание муравьиной кислоты методом нейтрализации (ГФ). Согласно ЕФ, метанол определяют методом газовой хроматографии (9-15 % об.). Сульфатная зола - не более 0,1 % в навеске 1,0 г.

I2 + 2NaOH - Nal + NaOI + Н20

Гипойодит окисляет формальдегид до муравьиной кислоты. Непрореагировавший гипойодит при подкислении раствора избытком серной кислоты превращается в йод, который оттитровывают тиосульфатом натрия:

НСОН + NaOI + NaOH - HCOONa + Nal + H20 NaOI + Nal + H2S04 -*■ I2 + Na2S04 + H20 I2 + 2Na2S203 - Na2S406 + 2NaI

Возможно использование и других титрующих агентов при определении формальдегида: водорода пероксида в щелочном растворе, церия(ІУ) сульфата, натрия сульфита.

Препарат можно рассматривать как пролекарство, так как физиологическое действие оказывает не сам гексаметилентетрамин, а формальдегид, выделяющийся при разложении препарата в кислой среде. Именно этим объясняется включение его в настоящий раздел (см. табл. 9.1).

Получение. Уротропин (тетраазаадамантан) получают конденсацией метаналя и аммиака из водных растворов. Промежуточный продукт реакции - гексагидро-1,3,5- триазин:

ll

Гексагидро- Уротропин

1,3,5-трназин


Определение подлинности. При нагревании смеси препарата с разведенной серной кислотой образуется аммонийная соль, из которой при добавлении избытка щелочи выделяется аммиак:

(CH2)6N4 + 2H2S04 + 6Н20 - 6НСОН + 2(NH4)2S04 (NH4)2S04 + 2NaOH - 2NH3t + Na2S04 + 2H20

Гексаметилентетрамин можно обнаружить также по красному окрашиванию раствора при добавлении салициловой кислоты после предварительного нагревания с серной кислотой (см. определение подлинности формальдегида).

Испытания на чистоту. В препарате не допускается присутствие примесей органических соединений, параформа, солей аммония. ГФ указывает допустимые пределы содержания примесей хлоридов, сульфатов, тяжелых металлов.

Количественное определение. Для количественного определения гексаметилентетрамина ГФ предлагает использовать метод нейтрализации. Для этого навеску препарата нагревают с избытком 0,1М раствора серной кислоты. Избыток кислоты оттитровы- вают раствором щелочи концентрацией 0,1 моль/л (индикатор метиловый красный).

На способности гексаметилентетрамина давать с йодом тетрайодиды основан йодометрический метод количественного определения.

Альдегиды- класс органических соединений, содержащих карбонильную группу -СОННазвание альдегидов происходит от названия углеводородных радикалов с добавлением суффикса -аль Общая формула предельных альдегидов СnH2n+1COH. Номенклатура и изомерия

Номенклатура этих двух групп соединений строится по-разному . Тривиальные названия альдегидов связывают их с тривиальными названиями кислот, в которые они переходят при окислении

Из кетонов лишь немногие имеют тривиальные названия (например, ацетон). Для них широко используется радикально-функциональная номенклатура , в которой названия кетонов даются с использованием названий радикалов, связанных с карбонильной группой. По номенклатуре ИЮПАК названия альдегидов производятся от названия углеводорода с тем же числом атомов углерода путём добавления окончания –аль .Длякетонов эта номенклатура требует окончания –он . Цифрой обозначается положение функциональной группы в цепи кетона.

Соединение Названия по триви-альной и радикально-функциональной номенклатурам Названия по номенклатуре ИЮПАК
муравьиный альдегид; формальдегид метаналь
уксусный альдегид; ацетальдегид этаналь
пропионовый альдегид пропиональ
масляный альдегид бутаналь
изомасляный альдегид метилпропаналь
валериановый альдегид пентаналь
изовалериановый альдегид 3-метилбутаналь
ацетон; диметилкетон пропанон
метилэтилкетон бутанон
метилпропилкетон пентанон-2
метилизопропилкетон 3-метилбутанон-2

Изомерия альдегидов и кетонов полностью отражается номенклатурой и комментарий не требует. Альдегиды и кетоны с одинаковым числом атомов углерода являются изомерами . Например:

Способы получения – Окисление или каталитическое дегидрирование первичных спиртов до альдегидов, вторичных – до кетонов . Реакции эти уже упоминались при рассмотрении химических свойств спиртов.

– Пиролиз кальциевых или бариевых солей карбоновых кислот, одна из которых – соль муравьиной кислоты, даёт альдегиды.

– Гидролиз геминальных (заместители у одного углерода) дигалогеналканов

– Гидратация ацетилена и его гомологов протекает в присутствии сульфата ртути (реакция Кучерова) или над гетерогенным катализатором

Физические свойства. Муравьиный альдегид – газ. Остальные низшие альдегиды и кетоны – жидкости, плохо растворимые в воде. Альдегиды имеют удушливый запах. Кетоны пахнут обычно приятно. 1. Р. Окисления.Альдегиды легко окисляются до карбоновых кислот. Окислителями могут служить гидроксид меди (II), оксид серебра, кислород воздуха:

Ароматические альдегиды окисляются труднее алифатических. Кетоны, как было сказано выше, окисляются труднее альдегидов. Окисление кетонов проводится в жестких условиях, в присутствии сильных окислителей. Образуются в результате смеси карбоновых кислот. При этом образуется металлическое серебро. Раствор оксида серебра готовят непосредственно перед опытом:

Альдегиды также восстанавливают свежеприготовленный аммиачный раствор гидроксида меди (II), обладающий светло-голубой окраской (реактив Фелинга), до желтого гидроксида меди (I), который при нагревании разлагается с выделением ярко-красного осадка оксида меди (I). СН3-СН=О + 2Cu(ОН)2 - СН3СООН+2CuОН+Н2О 2CuOH->Cu2O+H2O

2. Р. Присоединения. Гидрирование - присоединение водорода.Карбонильные соединения восстанавливаются до спиртов водородом, алюмогидридом лития, боргидридом натрия. Водород присоединяется по связи C=O. Реакция идет труднее, чем гидрирование алкенов: требуется нагревание, высокое давление и металлический катализатор (Pt,Ni