Теплота сгорания дизельного топлива. Теплота сгорания топлива

5.ТЕПЛОВОЙ БАЛАНС ГОРЕНИЯ

Рассмотрим методы расчета теплового баланса процесса горения газообразных, жидких и твердых топлив. Расчет сводится к решению следующих задач.

· Определение теплоты горения (теплотворной способности) топлива.

· Определение теоретической температуры горения.

5.1. ТЕПЛОТА ГОРЕНИЯ

Химические реакции сопровождаются выделением или поглощением теплоты. При выделении теплоты реакция называется экзотермической, а при поглощении – эндотермической. Все реакции горения являются экзотермическими, а продукты горения относятся к экзотермическим соединениям.

Выделяемая (или поглощаемая) при протекании химической реакции теплота называется теплотой реакции. В экзотермических реакциях она положительна, в эндотермических – отрицательна. Реакция горения всегда сопровождается выделением теплоты. Теплотой горения Q г (Дж/моль) называется количество теплоты, которое выделяется при полном сгорании одного моля вещества и превращении горючего вещества в продукты полного горения. Моль является основной единицей количества вещества в системе СИ. Один моль – это такое количество вещества, в котором находится столько же частиц (атомов, молекул и т.д.), сколько содержится атомов в 12 г изотопа углерода–12. Масса количества вещества, равного 1 молю (молекулярная или молярная масса) численно совпадает с относительной молекулярной массой данного вещества.

Например, относительная молекулярная масса кислорода (O 2) равна 32, углекислого газа (CO 2) равна 44, а соответствующие молекулярные массы будут равны M =32 г/моль и M =44 г/моль. Таким образом, в одном моле кислорода содержится 32 грамма этого вещества, а в одном моле CO 2 содержится 44 грамма углекислого газа.

В технических расчетах чаще используется не теплота горения Q г , а теплотворная способность топлива Q (Дж/кг или Дж/м 3). Теплотворной способностью вещества называется количество теплоты, которое выделяется при полном сгорании 1 кг или 1 м 3 вещества. Для жидких и твердых веществ расчет проводится на 1 кг, а для газообразных – на 1 м 3 .

Знание теплоты горения и теплотворной способности топлива необходимо для расчета температуры горения или взрыва, давления при взрыве, скорости распространения пламени и других характеристик. Теплотворная способность топлива определяется либо экспериментальным, либо расчетным способами. При экспериментальном определении теплотворной способности заданная масса твердого или жидкого топлива сжигается в калориметрической бомбе, а в случае газообразного топлива – в газовом калориметре. С помощью этих приборов измеряется суммарная теплота Q 0 , выделяющаяся при сгорании навески топлива массой m . Величина теплотворной способности Q г находится по формуле

Связь между теплотой горения и
теплотворной способностью топлива

Для установления связи между теплотой горения и теплотворной способностью вещества необходимо записать уравнение химической реакции горения.

Продуктом полного горения углерода является диоксид углерода:

С+О 2 →СО 2 .

Продуктом полного горения водорода является вода:

2Н 2 +О 2 →2Н 2 О.

Продуктом полного горения серы является диоксид серы:

S +О 2 →SO 2 .

При этом выделяются в свободном виде азот, галоиды и другие негорючие элементы.

Горючее вещество – газ

В качестве примера проведем расчет теплотворной способности метана CH 4 , для которого теплота горения равна Q г =882.6 .

· Определим молекулярную массу метана в соответствии с его химической формулой (СН 4):

М=1∙12+4∙1=16 г/моль.

· Определим теплотворную способность 1 кг метана:

· Найдем объем 1 кг метана, зная его плотность ρ=0.717 кг/м 3 при нормальных условиях:

.

· Определим теплотворную способность 1 м 3 метана:

Аналогично определяется теплотворная способность любых горючих газов. Для многих распространенных веществ значения теплоты горения и теплотворной способности были измерены с высокой точностью и приведены в соответствующей справочной литературе. Приведем таблицу значений теплотворной способности некоторых газообразных веществ (табл. 5.1). Величина Q в этой таблице приведена в МДж/м 3 и в ккал/м 3 , поскольку часто в качестве единицы теплоты используется 1 ккал = 4.1868 кДж.

Таблица 5.1

Теплотворная способность газообразных топлив

Вещество

Ацетилен

Q

Горючее вещество – жидкость или твердое тело

В качестве примера проведем расчет теплотворной способности этилового спирта С 2 Н 5 ОН, для которого теплота горения Q г = 1373.3 кДж/моль.

· Определим молекулярную массу этилового спирта в соответствии с его химической формулой (С 2 Н 5 ОН):

М = 2∙12 + 5∙1 + 1∙16 + 1∙1 = 46 г/моль.

· Определим теплотворную способность 1 кг этилового спирта:

Аналогично определяется теплотворная способность любых жидких и твердых горючих. В табл. 5.2 и 5.3 приведены значения теплотворной способности Q (МДж/кг и ккал/кг) для некоторых жидких и твердых веществ.

Таблица 5.2

Теплотворная способность жидких топлив

Вещество

Метиловый спирт

Этиловый спирт

Мазут, нефть

Q

Таблица 5.3

Теплотворная способность твердых топлив

Вещество

Дерево свежее

Дерево сухое

Бурый уголь

Торф сухой

Антрацит, кокс

Q

Формула Менделеева

Если теплотворная способность топлива неизвестна, то ее можно рассчитать с помощью эмпирической формулы, предложенной Д.И. Менделеевым. Для этого необходимо знать элементарный состав топлива (эквивалентную формулу топлива), то есть процентное содержание в нем следующих элементов:

Кислорода (О);

Водорода (Н);

Углерода (С);

Серы (S );

Золы (А);

Воды (W ).

В продуктах сгорания топлив всегда содержатся пары воды, образующиеся как из-за наличия влаги в топливе, так и при сгорании водорода. Отработанные продукты сгорания покидают промышленную установку при температуре выше температуры точки росы. Поэтому тепло, которое выделяется при конденсации водяных паров, не может быть полезно использовано и не должно учитываться при тепловых расчетах.

Для расчета обычно применяется низшая теплотворная способность Q н топлива, которая учитывает тепловые потери с парами воды. Для твердых и жидких топлив величина Q н (МДж/кг) приближенно определяется по формуле Менделеева:

Q н =0.339+1.025+0.1085 – 0.1085 – 0.025, (5.1)

где в скобках указано процентное (масс. %) содержание соответствующих элементов в составе топлива.

В этой формуле учитывается теплота экзотермических реакций горения углерода, водорода и серы (со знаком «плюс»). Кислород, входящий в состав топлива, частично замещает кислород воздуха, поэтому соответствующий член в формуле (5.1) берется со знаком «минус». При испарении влаги теплота расходуется, поэтому соответствующий член, содержащий W , берется также со знаком «минус».

Сравнение расчетных и опытных данных по теплотворной способности разных топлив (дерево, торф, уголь, нефть) показало, что расчет по формуле Менделеева (5.1) дает погрешность, не превышающую 10%.

Низшая теплотворная способность Q н (МДж/м 3) сухих горючих газов с достаточной точностью может быть рассчитана как сумма произведений теплотворной способности отдельных компонентов и их процентного содержания в 1 м 3 газообразного топлива.

Q н = 0.108[Н 2 ] + 0.126[СО] + 0.358[СН 4 ] + 0.5[С 2 Н 2 ] + 0.234[Н 2 S ]…, (5.2)

где в скобках указано процентное (объем. %) содержание соответствующих газов в составе смеси.

В среднем теплотворная способность природного газа составляет примерно 53.6 МДж/м 3 . В искусственно получаемых горючих газах содержание метана СН 4 незначительно. Основными горючими составляющими являются водород Н 2 и оксид углерода СО. В коксовальном газе, например, содержание Н 2 доходит до (55 ÷ 60)%, а низшая теплотворная способность такого газа достигает 17.6 МДж/м 3 . В генераторном газе содержание СО ~ 30% и Н 2 ~15%, при этом низшая теплотворная способность генераторного газа Q н = (5.2÷6.5) МДж/м 3 . В доменном газе содержание СО и Н 2 меньше; величина Q н = (4.0÷4.2) МДж/м 3 .

Рассмотрим примеры расчета теплотворной способности веществ по формуле Менделеева.

Определим теплотворную способность угля, элементный состав которого приведен в табл. 5.4.

Таблица 5.4

Элементный состав угля

· Подставим приведенные в табл. 5.4 данные в формулу Менделеева (5.1) (азот N и зола A в эту формулу не входят, поскольку являются инертными веществами и не участвуют в реакции горения):

Q н =0.339∙37.2+1.025∙2.6+0.1085∙0.6–0.1085∙12–0.025∙40=13.04 МДж/кг.

Определим количество дров, необходимое для нагрева 50 литров воды от 10° С до 100° С, если на нагревание расходуется 5% теплоты, выделяемой при горении, а теплоемкость воды с =1 ккал/(кг∙град) или 4.1868 кДж/(кг∙град). Элементный состав дров приведен в табл. 5.5:

Таблица 5.5

Элементный состав дров

· Найдем теплотворную способность дров по формуле Менделеева (5.1):

Q н =0.339∙43+1.025∙7–0.1085∙41–0.025∙7= 17.12 МДж/кг.

· Определим количество теплоты, расходуемое на нагрев воды, при сгорании 1 кг дров (с учетом того, что на ее нагрев расходуется 5% теплоты (a =0.05), выделяемой при горении):

Q 2 =a Q н =0.05·17.12=0.86 МДж/кг.

· Определим количество дров, необходимое для нагрева 50 литров воды от 10° С до 100° С:

кг.

Таким образом, для нагрева воды требуется около 22 кг дров.

Всем известно, что в нашей жизни огромную роль играет использование топлива. Топливо применяют практически в любой отрасли современной промышленности. Особенно часто применяется топливо, полученное из нефти: бензин, керосин, соляр и другие. Также применяют горючие газы (метан и другие).

Откуда берется энергия у топлива

Известно, что молекулы состоят из атомов . Для того, чтобы разделить какую либо молекулу (например, молекулу воды) на составляющие её атомы, требуется затратить энергию (на преодоление сил притяжения атомов). Опыты показывают, что при соединении атомов в молекулу (это и происходит при сжигании топлива) энергия, напротив, выделяется.

Как известно, существует ещё и ядерное топливо, но мы не будем здесь говорить о нём.

При сгорании топлива выделяется энергия. Чаще всего это тепловая энергия . Опыты показывают, что количество выделившейся энергии прямо пропорционально количеству сгоревшего топлива.

Удельная теплота сгорания

Для расчёта этой энергии используют физическую величину, называемую удельная теплота сгорания топлива. Удельная теплота сгорания топлива показывает, какая энергия выделяется при сгорании единичной массы топлива.

Её обозначают латинской буквой q. В системе СИ единица измерения этой величины Дж/кг. Отметим, что каждое топливо имеет собственную удельную теплоту сгорания. Эта величина измерена практически для всех видов топлива и при решении задач определяется по таблицам.

Например, удельная теплота сгорания бензина 46 000 000 Дж/кг, керосина такая же, этилового спирта 27 000 000 Дж/кг. Нетрудно понять, что энергия, выделившаяся при сгорании топлива, равна произведению массы этого топлива и удельной теплоты сгорания топлива:

Рассмотрим примеры

Рассмотрим пример. 10 граммов этилового спирта сгорело в спиртовке за 10 минут. Найдите мощность спиртовки.

Решение. Найдём количество теплоты, выделившееся при сгорании спирта:

Q = q*m; Q = 27 000 000 Дж/кг * 10 г = 27 000 000 Дж/кг * 0,01 кг = 270 000 Дж.

Найдём мощность спиртовки:

N = Q / t = 270 000 Дж / 10 мин = 270 000 Дж / 600 с = 450 Вт.

Рассмотрим более сложный пример. Алюминиевую кастрюлю массой m1, заполненную водой массой m2, нагрели с помощью примуса от температуры t1 до температуры t2 (00С < t1 < t2

Решение.

Найдём количество теплоты, полученное алюминием:

Q1 = c1 * m1 * (t1 t2);

найдём количество теплоты, полученное водой:

Q2 = c2 * m2 * (t1 t2);

найдём количество теплоты, полученное кастрюлей с водой:

найдём количество теплоты, отданное сгоревшим бензином:

Q4 = Q3 / k * 100 = (Q1 + Q2) / k * 100 =

(c1 * m1 * (t1 t2) + c2 * m2 * (t1 t2)) / k * 100;

Сегодня люди крайне зависимы от топлива. Без него не обходится обогрев жилищ, приготовление пищи, работа оборудования и транспортных средств. Большинство видов используемого топлива - углеводороды. Для оценки их эффективности используют значения удельной теплоты сгорания. Керосин обладает сравнительно внушительным показателем. Благодаря этому качеству он используется в двигателях ракет и самолётов.

Благодаря своим свойствам, керосин используется в двигателях ракет

Свойства, получение и применение

История керосина насчитывает более 2 тыс. лет и начинается с тех пор, когда арабские учёные придумали метод перегонки нефти на отдельные компоненты. Официально он был открыт в 1853 году, когда канадский врач Абрахам Геснер разработал и запатентовал метод извлечения прозрачной горючей жидкости из битумов и горючих сланцев.

После бурения первой нефтяной скважины в 1859 году нефть стала основным сырьём для керосина. Из-за повсеместного использования в лампах он десятилетиями считался главным продуктом нефтеперегонки. Лишь появление электричества снизило его значение для освещения. Производство керосина упало также с ростом популярности автомобилей - это обстоятельство существенно повысило важность бензина как нефтепродукта. Тем не менее и сегодня во многих частях мира керосин применяется для отопления и освещения, а современное реактивное топливо - это тот же продукт, но более высокого качества.

С повышением количества использования автомобилей – упала популярность керосина

Керосин - лёгкая прозрачная жидкость, химически представляющая собой смесь органических соединений. Его состав во многом зависит от сырья, но, как правило, состоит из десятка различных углеводородов, молекула каждого из которых содержит от 10 до 16 атомов углерода. Керосин менее летуч, чем бензин. Сравнительная температура возгорания керосина и бензина, при которой они выделяют воспламеняющиеся пары возле поверхности, составляет 38 и -40°C, соответственно.

Это свойство позволяет рассматривать керосин как относительно безопасное топливо с точки зрения хранения, использования и транспортировки. На основании температуры кипения (от 150 до 350°C) он классифицируется как один из так называемых средних дистиллятов сырой нефти.

Керосин может быть получен прямогонным способом, то есть физически отделён от нефти, путём дистилляции или с помощью химического разложения более тяжёлых фракций в результате крекинг процесса.

Характеристика керосина как топлива

Горением называют процесс бурного окисления веществ с выделением тепла. Как правило, в реакции участвует кислород, содержащийся в воздухе. Во время сжигания углеводородов образуются такие основные продукты горения:

  • углекислый газ;
  • водяной пар;
  • сажа.

Количество энергии, генерируемое во время сгорания топлива, зависит от его вида, условий сжигания, массы или объёма. Энергия измеряется в джоулях или калориях. Удельной (на единицу измерения количества вещества) теплотой сгорания называют энергию, полученную при сжигании единицы топлива:

  • молярная (например, Дж/моль);
  • массовая (например, Дж/кг);
  • объёмная (например, ккал/л).

В большинстве случаев для оценки газообразных, жидких и твёрдых топлив оперируют показателем массовой теплоты сгорания, выраженной в Дж/кг.


Во время сжигания углевода образуется несколько элементов, например, сажа

Значение теплоты сгорания будет зависеть от того, брались ли в учёт процессы, происходящие с водой во время сгорания. Испарение влаги - энергоёмкий процесс , а учёт теплоотдачи при конденсации этих паров также способен повлиять на результат.

Результат замеров, производимых до того, как сконденсированный пар вернёт энергию в систему, называют низшей теплотой сгорания, а показатель, полученный после конденсации паров, называется высшей теплотой. Углеводородные двигатели не могут использовать дополнительную энергию водяного пара в выхлопе, поэтому показатель нетто актуален для производителей моторов и встречается в справочниках чаще.

Нередко при указании теплотворной способности не уточняют о том, какая из величин имеется в виду, что может привести к путанице. Сориентироваться помогает знание того, что в РФ традиционно принято указывать низшую.

Низшая теплота сгорания – важный показатель

Следует отметить, что для некоторых видов топлива разделение на энергию нетто и брутто не имеет смысла, так как они не образуют воду во время горения. В отношении керосина это неактуально, поскольку содержание углеводородов в нём велико. При сравнительно невысокой плотности (между 780 кг/м³ и 810 кг/м³) его теплотворная способность аналогична этому же показателю у дизельного топлива и составляет:

  • низшая - 43,1 МДж/кг;
  • высшая - 46,2 МДж/кг.

Сравнение с другими видами горючего

Рассматриваемый показатель очень удобен для оценки потенциального количества тепла, содержащегося в топливе. Например, теплота сгорания бензина на единицу массы сопоставима с таким же показателем у керосина, но первый значительно плотнее. Как следствие, в таком же сравнении литр бензина содержит меньше энергии.

Удельная теплота сгорания нефти как смеси углеводородов зависит от её плотности, которая непостоянна для различных месторождений (43-46 МДж/кг). Расчётные методы позволяют с высокой точностью определить это значение, если есть исходные данные о её составе.

Усреднённо показатели для некоторых видов горючих жидкостей, входящих в состав нефти, выглядят так (в МДж/кг):

  • дизельное топливо - 42-44;
  • бензин - 43-45;
  • керосин - 43-44.

Калорийность твёрдых видов горючего, таких как торф и уголь, имеет больший разбег. Это связано с тем, что их состав может сильно отличаться как по содержанию несгораемых веществ, так и по калорийности углеводородов. Например, теплотворная способность торфа различных типов может колебаться в пределах 8-24 МДж/кг, а каменного угля - 13-36 МДж/кг. Среди распространённых газов большой теплотворностью отличается водород - 120 МДж/кг. Следующий по удельной теплоте сгорания - метан (50 МДж/кг).

Можно сказать, что керосин - топливо, выдержавшее испытание временем именно благодаря сравнительно высокой энергоёмкости при низкой цене. Его применение не только экономически оправдано, но и в некоторых случаях безальтернативно.

Известно, что источником энергии, которая используется в промышленности, на транспорте, в сельском хозяйстве, в быту, является топливо. Это уголь, нефть, торф, дрова, природный газ и др. При сгорании топлива выделяется энергия. Попытаемся выяснить, за счёт чего выделяется при этом энергия.

Вспомним строение молекулы воды (рис. 16, а). Она состоит из одного атома кислорода и двух атомов водорода. Если молекулу воды разделить на атомы, то при этом необходимо преодолеть силы притяжения между атомами, т. е. совершить работу, а значит, затратить энергию. И наоборот, если атомы соединяются в молекулу, энергия выделяется.

Использование топлива основано как раз на явлении выделения энергии при соединении атомов. Так, например, атомы углерода, содержащиеся в топливе, при горении соединяются с двумя атомами кислорода (рис. 16, б). При этом образуется молекула оксида углерода - углекислого газа - и выделяется энергия.

Рис. 16. Строение молекул:
a - воды; б - соединение атома углерода и двух атомов кислорода в молекулу углекислого газа

При расчёте двигателей инженеру необходимо точно знать, какое количество теплоты может выделить сжигаемое топливо. Для этого надо опытным путём определить, какое количество теплоты выделится при полном сгорании одной и той же массы топлива разных видов.

    Физическая величина, показывающая, какое количество теплоты выделяется при полном сгорании топлива массой 1 кг, называется удельной теплотой сгорания топлива.

Удельная теплота сгорания обозначается буквой q. Единицей удельной теплоты сгорания является 1 Дж / кг.

Удельную теплоту сгорания определяют на опыте с помощью довольно сложных приборов.

Результаты опытных данных приведены в таблице 2.

Таблица 2

Из этой таблицы видно, что удельная теплота сгорания, например, бензина 4,6 10 7 Дж / кг.

Это значит, что при полном сгорании бензина массой 1 кг выделяется 4,6 10 7 Дж энергии.

Общее количество теплоты Q, выделяемое при сгорании m кг топлива, вычисляется по формуле

Вопросы

  1. Что такое удельная теплота сгорания топлива?
  2. В каких единицах измеряют удельную теплоту сгорания топлива?
  3. Что означает выражение «удельная теплота сгорания топлива равна 1,4 10 7 Дж / кг? Как вычисляют количество теплоты, выделяемое при сгорании топлива?

Упражнение 9

  1. Какое количество теплоты выделяется при полном сгорании древесного угля массой 15 кг; спирта массой 200 г?
  2. Сколько теплоты выделится при полном сгорании нефти, масса которой 2,5 т; керосина, объём которого равен 2 л, а плотность 800 кг / м 3 ?
  3. При полном сгорании сухих дров выделилось 50 000 кДж энергии. Какая масса дров сгорела?

Задание

Используя таблицу 2, постройте столбчатую диаграмму для удельной теплоты сгорания дров, спирта, нефти, водорода, выбрав масштаб следующим образом: ширина прямоугольника - 1 клетка, высота 2 мм соответствует 10 Дж.

Что такое топливо?

Это один компонент либо смесь веществ, которые способны к химическим превращениям, связанным с выделением тепла. Разные виды топлива отличаются количественным содержанием в них окислителя, который применяется для выделения тепловой энергии.

В широком смысле топливо является энергоносителем, то есть, потенциальным видов потенциальной энергии.

Классификация

В настоящее время виды топлива подразделяют по агрегатному состоянию на жидкое, твердое, газообразное.

К твердому природному виду причисляют каменный и дрова, антрацит. Брикеты, кокс, термоантрацит это разновидности искусственного твердого топлива.

К жидкостям причисляются вещества, имеющие в составе вещества органического происхождения. Основными их компонентами являются: кислород, углерод, азот, водород, сера. Искусственным жидким топливом будут разнообразные смолы, мазут.

Является смесью разнообразных газов: этилена, метана, пропана, бутана. Помимо них в составе газообразного топлива есть углекислый и угарный газы, сероводород, азот, водяной пар, кислород.

Показатели топлива

Основной показатель сгорания. Формула для определения теплотворной способности рассматривается в термохимии. выделяют «условного топлива», которое подразумевает теплоту сгорания 1 килограмма антрацита.

Бытовое печное топливо предназначается для сжигания в отопительных устройствах незначительной мощности, которые находятся в жилых помещениях, теплогенераторах, применяемых в сельском хозяйстве для сушки кормов, консервирования.

Удельная теплота сгорания топлива - это такая величина, что демонстрирует количество теплоты, которое образуется при полном сгорании топлива объемом 1 м 3 либо массой один килограмм.

Для измерения этой величины используют Дж/кг, Дж/м 3 , калория/м 3 . Чтобы определить теплоту сгорания, используют метода калориметрии.

При увеличении удельной теплоты сгорания топлива, снижается удельный расход топлива, а коэффициент полезного действия остается неизменной величиной.

Теплота сгорания веществ является количеством энергии, выделяющейся при окислении твердого, жидкого, газообразного вещества.

Она определяется химическим составом, а также агрегатным состоянием сгораемого вещества.

Особенности продуктов сгорания

Высшая и низшая теплота сгорания связана с агрегатным состоянием воды в получаемых после сгорания топлива веществах.

Высшая теплота сгорания это количество теплоты, выделяемое при полном сгорании вещества. В эту величину включают и теплоту конденсации водяного пара.

Низшая рабочая теплота сгорания является той величиной, что соответствует выделению тепла при сгорании без учета теплоты конденсации водяных паров.

Скрытой теплотой конденсации считают величину энергии конденсации водяного пара.

Математическая взаимосвязь

Высшая и низшая теплота сгорания связаны следующим соотношением:

Q B = Q H + k(W + 9H)

где W - количество по массе (в %) воды в горючем веществе;

H-количество водорода (% по массе) в горючем веществе;

k - коэффициент, составляющий величину 6 ккал/кг

Способы проведения вычислений

Высшая и низшая теплота сгорания определяется двумя основными методами: расчетным и экспериментальным.

Для проведения экспериментальных вычислений применяют калориметры. Сначала сжигают в нем навеску топлива. Теплота, которая будет при этом выделяться, полностью поглощается водой. Имея представление о массе воды, можно определить по изменению ее температуры, величину ее теплоты сгорания.

Данная методика считается простой и эффективной, она предполагает только владение информацией о данных технического анализа.

В расчетной методике высшая и низшая теплота сгорания вычисляется по формуле Менделеева.

Q p H = 339C p +1030H p -109(O p -S p) - 25 W p (кДж/ кг)

Оно учитывает содержание углерода, кислорода, водорода, водяного пара, серы в рабочем составе (в процентах). Количество теплоты при сгорании определяется с учетом условного топлива.

Теплота сгорания газа позволяет проводить предварительные расчеты, выявлять эффективность применения определенного вида топлива.

Особенности происхождения

Для того чтобы понять, сколько теплоты выделяется при сгорании определенного топлива, необходимо иметь представление об его происхождении.

В природе есть разные варианты твердого топлива, которые отличаются между собой составом и свойствами.

Его образование осуществляется через несколько стадий. Сначала образуется торф, затем получается бурый и каменный уголь, потом формируется антрацит. В качестве основных источников образования твердого топлива выступают листья, древесина, хвоя. Отмирая, части растений при воздействии воздуха, разрушаются грибками, образуют торф. Его скопление превращается в бурую массу, потом получается бурый газ.

При высоком давлении и температуре, бурый газ переходит в каменный уголь, потом топливо накапливается в виде антрацита.

Помимо органической массы, в топливе есть дополнительный балласт. Органической считают ту часть, что образовалась из органических веществ: водорода, углерода, азота, кислорода. Помимо этих химических элементов, в его составе есть балласта: влага, зола.

Топочная техника предполагает выделение рабочей, сухой, а также горючей массы сжигаемого топлива. Рабочей массой называют топливо в исходном виде, поступающем к потребителю. Сухая масса - это состав, в котором отсутствует вода.

Состав

Самыми ценными компонентами считаются углерод и водород.

Эти элементы содержатся в любом виде топлива. В торфе и древесине процентное содержание углерода достигает 58 процентов, в каменном и буром угле - 80%, а в антраците оно достигает 95 процентов по массе. В зависимости от этого показателя меняется количество теплоты, выделяемой при сгорании топлива. Водород это второй по важности элемент любого топлива. Связываясь с кислородом, он образует влагу, которая существенно снижает тепловую ценность любого топлива.

Его процентное содержание колеблется от 3,8 в горючих сланцах до 11 в мазуте. В качестве балласта выступает кислород, входящий в состав топлива.

Он не является теплообразующим химическим элементом, поэтому негативно отражается на величине теплоты его сгорания. Сгорание азота, содержащегося в свободном либо связанном виде в продуктах сгорания, считается вредными примесями, поэтому его количество четко лимитируется.

Сера входит в состав топлива в виде сульфатов, сульфидов, а также в качестве сернистых газов. При гидратации оксиды серы образуют серную кислоту, которая разрушает котельное оборудование, негативно воздействует на растительность и живые организмы.

Именно поэтому сера является тем химическим элементом, присутствие которого в природном топливе является крайне нежелательным. При попадании внутрь рабочего помещения, сернистые соединения вызывают существенные отравления обслуживающего персонала.

Выделяют три вида золы в зависимости от ее происхождения:

  • первичную;
  • вторичную;
  • третичную.

Первичный вид формируется из минеральных веществ, которые содержатся в растениях. Вторичная зола образуется как результат попадания во время пластообразования растительных остатков песком и землей.

Третичная зола оказывается в составе топлива в процессе добычи, хранения, а также его транспортировки. При существенном отложении золы происходит уменьшение теплопередачи на поверхности нагрева котельного агрегата, снижает величину теплопередачи к воде от газов. Огромное количество золы негативно отражается на процессе эксплуатации котла.

В заключение

Существенное влияние на процесс горения любого вида топлива оказывают летучие вещества. Чем больше их выход, тем объемнее будет объем фронта пламени. Например, каменный уголь, торф, легко загораются, процесс сопровождается незначительными потерями тепла. Кокс, который остается после удаления летучих примесей, в своем составе имеет только минеральные и углеродные соединения. В зависимости от особенностей топлива, величина количества теплоты существенно изменяется.

В зависимости от химического состава выделяют три стадии формирования твердого топлива: торфяную, буроугольную, каменноугольную.

Натуральную древесину применяют в небольших котельных установках. В основном используют щепу, опилки, горбыли, кору, сами дрова применяют в незначительных количествах. В зависимости от породы древесины величина выделяемой теплоты существенно изменяется.

По мере снижения теплоты сгорания, дрова приобретают определенные преимущества: быструю воспламеняемость, минимальную зольность, отсутствие следов серы.

Достоверная информация о составе природного либо синтетического топлива, его теплотворной способности, является отличным способом проведения термохимических вычислений.

В настоящее время появляется реальная возможность выявления тех основных вариантов твердого, газообразного, жидкого топлива, которые станут самыми эффективными и недорогими в использовании в определенной ситуации.