Какую физическую величину называют удельной теплоемкостью. Чему равна удельная теплоемкость

Удельная теплоемкость является характеристикой вещества. То есть у разных веществ она различна. Кроме того, одно и то же вещество, но в разных агрегатных состояниях обладает разной удельной теплоемкостью. Таким образом, правильно говорить об удельной теплоемкости вещества (удельная теплоемкость воды, удельная теплоемкость золота, удельная теплоемкость древесины и т. д.).

Удельная теплоемкость конкретного вещества показывает, сколько тепла (Q) надо ему передать, чтобы нагреть 1 килограмм этого вещества на 1 градус Цельсия. Удельную теплоемкость обозначают латинской буквой c . То есть, c = Q/mt. Учитывая, что t и m равны единице (1 кг и 1 °C), то удельная теплоемкость численно равна количеству теплоты.

Однако теплота и удельная теплоемкость имеют разные единицы измерения. Теплота (Q) в системе Си измеряется в Джоулях (Дж). А удельная теплоемкость - в Джоулях, деленных на килограмм, умноженный на градус Цельсия: Дж/(кг · °C).

Если удельная теплоемкость какого-то вещества равна, например, 390 Дж/(кг · °C), то это значит, что если 1 кг этого вещества нагреется на 1 °C, то оно поглотит 390 Дж тепла. Или, другими словами, чтобы нагреть 1 кг этого вещества на 1 °C, ему надо передать 390 Дж тепла. Или, если 1 кг этого вещества охладится на 1 °C, то оно отдаст 390 Дж тепла.

Если же на 1 °C нагревается не 1, а 2 кг вещества, то ему надо передать в два раза больше тепла. Так для примера выше это уже будет 780 Дж. То же самое будет, если нагреть на 2 °C 1 кг вещества.

Удельная теплоемкость вещества не зависит от его начальной температуры. То есть если например, жидкая вода имеет удельную теплоемкость 4200 Дж/(кг · °C), то нагревание на 1 °C хоть двадцатиградусной, хоть девяностоградусной воды одинаково потребует 4200 Дж тепла на 1 кг.

А вот лед имеет удельную теплоемкость отличную от жидкой воды, почти в два раза меньше. Однако, чтобы и его нагреть на 1 °C потребуется одинаковое количество теплоты на 1 кг, независимо от его начальной температуры.

Удельная теплоемкость также не зависит от формы тела, которое изготовлено из данного вещества. Стальной брусок и стальной лист, имеющие одинаковую массу, потребуют одинаковое количество теплоты для нагревания их на одинаковое количество градусов. Другое дело, что при этом следует пренебречь обменом теплом с окружающей средой. У листа поверхность больше, чем у бруска, а значит, лист больше отдает тепла, и поэтому быстрее будет остывать. Но в идеальных условиях (когда можно пренебречь потерей тепла) форма тела не играет роли. Поэтому говорят, что удельная теплоемкость - это характеристика вещества, но не тела.

Итак, удельная теплоемкость у разных веществ различна. Это значит, что если даны различные вещества одинаковой массы и с одинаковой температурой, то чтобы нагреть их до другой температуры, им надо передать разное количество тепла. Например, килограмму меди потребуется тепла примерно в 10 раз меньше, чем воде. То есть у меди удельная теплоемкость примерно в 10 раз меньше, чем у воды. Можно сказать, что в «медь помещается меньше тепла».

Количество теплоты, которое надо передать телу, чтобы нагреть его от одной температуры до другой, находят по следующей формуле:

Q = cm(t к – t н)

Здесь t к и t н - конечная и начальная температуры, m - масса вещества, c - его удельная теплоемкость. Удельную теплоемкость обычно берут из таблиц. Из этой формулы можно выразить удельную теплоемкость.

Теплоемкость - это способность поглощать некоторые объемы тепла во время нагревания или отдавать при охлаждении. Теплоемкость тела - это отношение бесконечно малого числа теплоты, что получает тело, к соответствующему приросту его температурных показателей. Величина измеряется в Дж/К. На практике применяют немного другую величину - удельную теплоемкость.

Определение

Что означает удельная теплоемкость? Это величина, относящаяся к единичному количеству вещества. Соответственно, численность вещества можно измерить в кубометрах, килограммах или даже в молях. От чего это зависит? В физике теплоемкость зависит напрямую от того, к какой количественной единице она относиться, а значит, различают молярную, массовую и объемную теплоемкость. В строительной сфере вы не будете встречаться с молярными измерениями, но с другими - сплошь и рядом.

Что влияет на удельную теплоемкость?

Что такое теплоемкость, вы знаете, но вот какие значения влияют на показатель, еще не ясно. На значение удельной теплоемкости напрямую воздействуют несколько компонентов: температура вещества, давление и иные термодинамические характеристики.

Во время роста температуры продукции его удельная теплоемкость растет, однако определенные вещества отличаются совершенно нелинейной кривой в этой зависимости. Например, с возрастанием температурных показателей с нуля до тридцати семи градусов удельная теплоемкость воды начинает понижаться, а если предел будет находиться между тридцатью семью и ста градусами, то показатель, наоборот, возрастет.

Стоит отметить, что параметр зависит еще и от того, каким образом разрешается изменяться термодинамическим характеристикам продукции (давлению, объему и так далее). Например, удельная теплоемкость при стабильном давлении и при стабильном объеме будут отличаться.

Как рассчитать параметр?

Вас интересует, чему равна теплоемкость? Формула расчета следующая: С=Q/(m·ΔT). Что это за значения такие? Q - это количество теплоты, что получает продукция при нагреве (или же выделяемое продукцией во время охлаждения). m - масса продукции, а ΔT - разность окончательной и начальной температур продукции. Ниже приведена таблица теплоемкости некоторых материалов.

Что можно сказать о вычислении теплоемкости?

Вычислить теплоемкость - это задача не из самых простых, особенно если применять исключительно термодинамические методы, точнее это невозможно сделать. Потому физики используют методы статистической физики или же знания микроструктуры продукции. Как произвести вычисления для газа? Теплоемкость газа рассчитывается из вычисления средней энергии теплового движения отдельно взятых молекул в веществе. Движения молекул могут быть поступательного и вращательного типа, а внутри молекулы может быть целый атом или колебание атомов. Классическая статистика говорит, что на каждую степень свободы вращательных и поступательных движений приходится в мольной величина, что равняется R/2, а на каждую колебательную степень свободы значение равняется R. Это правило еще именуют законом равнораспределения.

При этом частичка одноатомного газа отличается всего тремя поступательными степенями свободы, а потому его теплоемкость должна приравниваться к 3R/2, что отлично согласуется с опытом. Каждая молекула двухатомного газа отличается тремя поступательными, двумя вращательными и одной колебательной степенями свободы, а значит, закон равнораспределения будет равняться 7R/2, а опыт показал, что теплоемкость моля двухатомного газа при обычной температуре составляет 5R/2. Почему оказалось такое расхождение теории? Все связано с тем, что при установлении теплоемкости потребуется учитывать разные квантовые эффекты, другими словами, пользоваться квантовой статистикой. Как видите, теплоемкость - это довольно-таки сложное понятие.

Квантовая механика говорит, что любая система частичек, что совершают колебания или же вращения, в том числе и молекула газа, может иметь определенные дискретные значения энергии. Если же энергия теплового движения в установленной системе недостаточна для возбуждения колебаний необходимой частоты, то данные колебания не вносят вклада в теплоемкость системы.

В твердых телах тепловое движение атомов являет собой слабые колебания поблизости определенных положений равновесия, это касается узлов кристаллической решетки. Атом обладает тремя колебательными степенями свободы и по закону мольная теплоемкость твердого тела приравнивается к 3nR, где n- количество имеющихся атомов в молекуле. На практике это значение является пределом, к которому стремится теплоемкость тела при высоких температурных показателях. Значение достигается при обычных температурных изменениях у многих элементов, это касается металлов, а также простых соединений. Также определяется теплоемкость свинца и других веществ.

Что можно сказать о низких температурах?

Мы уже знаем, что такое теплоемкость, но если говорить о низких температурах, то как значение будет рассчитываться тогда? Если речь идет о низких температурных показателях, то теплоемкость твердого тела тогда оказывается пропорциональной T 3 или же так называемый закон теплоемкости Дебая. Главный критерий, позволяющий отличить высокие показатели температуры от низких, является обычное сравнение их с характерным для определенного вещества параметром - это может быть характеристическая или температура Дебая q D . Представленная величина устанавливается спектром колебания атомов в продукции и существенно зависит от кристаллической структуры.

У металлов определенный вклад в теплоемкость дают электроны проводимости. Данная часть теплоемкости высчитывается с помощью статистики Ферми-Дирака, в которой учитываются электроны. Электронная теплоемкость металла пропорциональная обычной теплоемкости, представляет собой сравнительно небольшую величину, а вклад в теплоемкость металла она вносит только при температурных показателях, близких к абсолютному нулю. Тогда решеточная теплоемкость становится очень маленькой, и ею можно пренебречь.

Массовая теплоемкость

Массовая удельная теплоемкость - это количество теплоты, что требуется поднести к единице массы вещества, дабы нагреть продукт на единицу температуры. Обозначается данная величина буквой С и измеряется она в джоулях, поделенных на килограмм на кельвин - Дж/(кг·К). Это все, что касается теплоемкости массовой.

Что такое объемная теплоемкость?

Объемная теплоемкость - это определенное количество теплоты, что требуется подвести к единице объема продукции, дабы нагреть ее на единицу температуры. Измеряется данный показатель в джоулях, поделенных на кубический метр на кельвин или Дж/(м³·К). Во многих строительных справочниках рассматривают именно массовую удельную теплоемкость в работе.

Применение на практике теплоемкости в строительной сфере

Многие теплоемкие материалы применяют активно при строительстве теплоустойчивых стен. Это крайне важно для домов, отличающихся периодическим отоплением. Например, печным. Теплоемкие изделия и стены, возведенные из них, отлично аккумулируют тепло, запасают его в отопительные периоды времени и поэтапно отдают тепло после выключения системы, позволяя таким образом поддерживать приемлемую температуру на протяжении суток.

Итак, чем больше будет запасено тепла в конструкции, тем комфортней и стабильней будет температура в комнатах.

Стоит отметить, что обычный кирпич и бетон, применяемые в домостроении, обладают значительно меньшей теплоемкостью, чем пенополистирол. Если брать эковату, то она в три раза более теплоемкая, нежели бетон. Следует отметить, что в формуле расчета теплоемкости совершенно не зря присутствует масса. Благодаря большой огромная массе бетона или кирпича в сравнении с эковатой позволяет в каменных стенах конструкций аккумулировать огромные объемы тепла и сглаживать все суточные температурные колебания. Только малая масса утеплителя во всех каркасных домах, несмотря на хорошую теплоемкость, является самой слабой зоной у всех каркасных технологий. Чтобы решить данную проблему, во всех домах монтируют внушительные теплоаккумуляторы. Что это такое? Это конструктивные детали, отличающиеся большой массой при достаточно хорошем показателе теплоемкости.

Примеры теплоаккумуляторов в жизни

Что это может быть? К примеру, какие-то внутренние кирпичные стены, большая печь или камин, стяжки из бетона.

Мебель в любом доме или квартире является отличным теплоаккумулятором, ведь фанера, ДСП и дерево фактически в три раза больше могут запасаться теплом лишь на килограмм веса, нежели пресловутый кирпич.

Есть ли недостатки в теплоаккумуляторах? Конечно, главный минус данного подхода состоит в том, что теплоаккумулятор требуется проектировать еще на стадии создания макета каркасного дома. Все из-за того, что он отличается большим весом, и это потребуется учесть при создании фундамента, а после еще представить, как данный объект будет интегрирован в интерьер. Стоит сказать, что учитывать придется не только массу, потребуется оценивать в работе обе характеристики: массу и теплоемкость. К примеру, если применять золото с невероятным весом в двадцать тонн на кубометр в качестве теплоаккумулятора, то продукция будет функционировать как нужно лишь на двадцать три процента лучше, нежели бетонный куб, вес которого составляет две с половиной тонны.

Какое вещество больше всего подходит для теплоаккумулятора?

Наилучшим продуктом для теплоаккумулятора является совсем не бетон и кирпич! Неплохо с этой задачей справляется медь, бронза и железо, но они очень тяжелые. Как ни странно, но лучший теплоаккумулятор - вода! Жидкость имеет внушительную теплоемкость, самую большую среди доступных нам веществ. Больше теплоемкость только у газов гелия (5190 Дж/(кг·К) и водорода (14300 Дж/(кг·К), но их проблематично применять на практике. При желании и необходимости смотрите таблицу теплоемкости нужных вам веществ.

Количество тепла, при получении которого температура тела повышается на один градус, называется теплоемкостью. Согласно этому определению.

Теплоемкость, отнесенная к единице массы, называется удельной теплоемкостью. Теплоемкость, отнесенная к одному молю, называется моляpной теплоемкостью.

Итак, теплоемкость опpеделяется чеpез понятие количества теплоты. Но последнее, как и pабота, зависит от пpоцесса. Значит и теплоемкость зависит от пpоцесса. Сообщать теплоту - нагpевать тело - можно пpи pазличных условиях. Однако пpи pазличных условиях на одно и то же увеличение темпеpатуpы тела потpебуется pазличное количество теплоты. Следовательно, тела можно хаpактеpизовать не одной теплоемкостью, а бесчисленным множеством (столько же, сколько можно пpидумать всевозможных пpоцессов, пpи котоpых пpоисходит теплопеpедача). Однако на пpактике обычно пользуются опpеделением двух теплоемкостей: теплоемкости пpи постоянном объеме и теплоемкости пpи постоянном давлении.

Теплоемкость различается в зависимости от того, при каких условиях происходит нагревание тела - при постоянном объеме или при постоянном давлении.

Если нагревание тела происходит при постоянном объеме, т. е. dV = 0, то работа равна нулю. В этом случае передаваемое телу тепло идет только на изменение его внутренней энергии, dQ = dE , и в этом случае теплоемкость равна изменению внутренней энергии при изменении температуры на 1 К, т. е.

.Поскольку для газа
, то
.Эта формула определяет теплоемкость 1 моля идеального газа, называемую молярной. При нагревании газа при постоянном давлении его объем меняется, сообщенное телу тепло идет не только на увеличение его внутренней энергии, но и на совершение работы, т.е.dQ = dE + PdV . Теплоемкость при постоянном давлении
.

Для идеального газа PV = RT и поэтому PdV = RdT .

Учитывая это, найдем
.Отношение
представляет собой величину, характерную для каждого газа и определяемую числом степеней свободы молекул газа. Измерение теплоемкости тела есть, таким образом, способ непосредственного измерения микроскопических характеристик составляющих его молекул.

Ф
ормулы для теплоемкости идеального газа приблизительно верно описывают эксперимент, причем, в основном, для одноатомных газов. Согласно формулам, полученным выше, теплоемкость не должна зависеть от температуры. На самом деле наблюдается картина, изображенная на рис., полученная опытным путем для двухатомного газа водорода. На участке 1 газ ведет себя как система частиц, обладающих лишь поступательными степенями свободы, на участке 2 возбуждается движение, связанное с вращательными степенями свободы и, наконец, на участке 3 появляются две колебательные степени свободы. Ступеньки на кривой хорошо согласуются с формулой (2.35), однако между ними теплоемкость растет с температурой, что соответствует как бы нецелому переменному числу степеней свободы. Такое поведение теплоемкости указывает на недостаточность используемого нами представления об идеальном газе для описания реальных свойств вещества.

Связь молярной теплоёмкости с удельной теплоёмкостью С =M с, где с - удельная теплоёмкость , М - молярная масса .Формула Майера.

Для любого идеального газа справедливо соотношение Майера:

,где R - универсальная газовая постоянная, - молярная теплоемкость при постоянном давлении, - молярная теплоемкость при постоянном объёме.

05.04.2019, 01:42

Удельная теплоемкость

Теплоемкость - это количество теплоты, поглощаемой телом при нагревании на 1 градус.

Теплоемкость тела обозначается заглавной латинской буквой С.

От чего зависит теплоемкость тела? Прежде всего, от его массы. Ясно, что для нагрева, напри­мер, 1 килограмма воды потребуется больше тепла, чем для нагрева 200 граммов.

А от рода вещества? Проделаем опыт. Возьмем два одинаковых сосуда и, налив в один из них воду массой 400 г, а в другой - растительное масло массой 400 г, начнем их нагревать с помощью одинаковых горелок. Наблюдая за показаниями термометров, мы увидим, что масло нагревается быстрее. Чтобы нагреть воду и масло до одной и той же температуры, воду следует нагревать доль­ше. Но чем дольше мы нагреваем воду, тем большее количество теплоты она получает от горелки.

Таким образом, для нагревания одной и той же массы разных веществ до одинаковой темпе­ратуры требуется разное количество теплоты. Количество теплоты, необходимое для нагревания тела и, следовательно, его теплоемкость зависят от рода вещества, из которого состоит это тело.

Так, например, чтобы увеличить на 1 °С температуру воды массой 1 кг, требуется количество теплоты, равное 4200 Дж, а для нагревания на 1 °С такой же массы подсолнечного масла необхо­димо количество теплоты, равное 1700 Дж.

Физическая величина, показывающая, какое количество теплоты требуется для нагревания 1 кг вещества на 1 °С, называется удельной теплоемкостью этого вещества.

У каждого вещества своя удельная теплоемкость, которая обозначается латинской буквой с и измеряется в джоулях на килограмм-градус (Дж/(кг·K)).

Удельная теплоемкость одного и того же вещества в разных агрегатных состояниях (твердом, жидком и газообразном) различна. Например, удельная теплоемкость воды равна 4200 Дж/(кг·K) , а удельная теплоемкость льда Дж/(кг·K) ; алюминий в твердом состоянии имеет удельную теплоемкость, равную 920 Дж/(кг·K) , а в жидком - Дж/(кг·K) .

Заметим, что вода имеет очень большую удельную теплоемкость. Поэтому вода в морях и океанах, нагреваясь летом, поглощает из воздуха большое количество тепла. Благодаря этому в тех местах, которые расположены вблизи больших водоемов, лето не бывает таким жарким, как в местах, удаленных от воды.


Удельная теплоемкость твердых веществ

В таблице приведены средние значения удельной теплоемкости веществ в интервале температур от 0 до 10°С(если не указана другая температура)

Вещество Удельная теплоемкость, кДж/(кг·K)
Азот твердый(при t=-250 °С) 0,46
Бетон (при t=20 °С) 0,88
Бумага (при t=20 °С) 1,50
Воздух твердый (при t=-193 °С) 2,0
Графит
0,75
Дерево дуб
2,40
Дерево сосна, ель
2,70
Каменная соль
0,92
Камень
0,84
Кирпич (при t=0 °С) 0,88


Удельная теплоемкость жидкостей

Вещество Температура,°C
Бензин (Б-70)
20
2,05
Вода
1-100
4,19
Глицерин
0-100
2,43
Керосин 0-100
2,09
Масло машинное
0-100
1,67
Масло подсолнечное
20
1,76
Мед
20
2,43
Молоко
20
3,94
Нефть 0-100
1,67-2,09
Ртуть
0-300
0,138
Спирт
20
2,47
Эфир
18
3,34

Удельная теплоемкость металлов и сплавов

Вещество Температура,°C Удельная теплоемкость,к Дж/(кг·K)
Алюминий
0-200
0,92
Вольфрам
0-1600
0,15
Железо
0-100
0,46
Железо
0-500
0,54
Золото
0-500
0,13
Иридий
0-1000
0,15
Магний
0-500
1,10
Медь
0-500
0,40
Никель
0-300
0,50
Олово
0-200
0,23
Платина
0-500
0,14
Свинец
0-300
0,14
Серебро
0-500
0,25
Сталь
50-300
0,50
Цинк
0-300
0,40
Чугун
0-200
0,54

Удельная теплоемкость расплавленных металлов и сжиженных сплавов

Вещество Температура,°C Удельная теплоемкость,к Дж/(кг·K)
Азот
-200,4
2,01
Алюминий
660-1000
1,09
Водород
-257,4
7,41
Воздух
-193,0
1,97
Гелий
-269,0
4,19
Золото
1065-1300
0,14
Кислород
-200,3
1,63
Натрий
100
1,34
Олово
250
0,25
Свинец
327
0,16
Серебро
960-1300
0,29

Удельная теплоемкость газов и паров

при нормальном атмосферном давлении

Вещество Температура,°C Удельная теплоемкость,к Дж/(кг·K)
Азот
0-200
1,0
Водород
0-200
14,2
Водяной пар
100-500
2,0
Воздух
0-400
1,0
Гелий
0-600
5,2
Кислород
20-440
0,92
Оксид углерода(II)
26-200
1,0
Оксид углерода(IV) 0-600
1,0
Пары спирта
40-100
1,2
Хлор
13-200
0,50

Приборы и принадлежности, используемые в работе:

2. Разновесы.

3. Термометр.

4. Калориметр.

6. Калориметрическое тело.

7. Плитка бытовая.

Цель работы:

Научиться опытным путем определять удельную теплоемкость вещества.

I. ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ.

Теплопроводность - передача теплоты от более нагретых частей тела к менее нагретым в следствии столкновений быстрых молекул с медленными, в результате этого быстрые молекулы передают часть своей энергии медленным.

Изменение внутренней энергии какого- либо тела прямо пропорционально его массе и изменению температуры тела.

DU = cmDT (1)
Q = cmDT (2)

Величина с, характеризующая зависимость изменения внутренней энергии тела при нагревании или охлаждении от рода вещества и внешних условий называется удельной теплоемкостью тела.

(4)

Величина C, характеризующая зависимость тела поглощать теплоту при нагревании и равная отношению количества теплоты сообщенной телу, к приращению его температуры, называется теплоемкостью тела .

C = c × m. (5)
(6)
Q = CDT (7)

Молярной теплоемкостью C m , называют количество теплоты, которое необходимо для нагревания одного моля вещества на 1 Кельвин

C m = сM. (8)
C m = (9)

Удельная теплоемкость зависит от характера процесса, при котором происходит его нагревание.

Уравнение теплового баланса.

При теплообмене суммы количеств теплоты, отданных всеми телами, у которых внутренняя энергия уменьшается, равна сумме количеств теплоты, полученных всеми телами, у которых внутренняя энергия увеличивается.

SQ отд = SQ получ (10)

Если тела образуют замкнутую систему и между ними происходит только теплообмен, то алгебраическая сумма полученных и отданных количеств теплоты равна 0.

SQ отд + SQ получ = 0.

Пример:

В теплообмене участвуют тело, калориметр, жидкость. Тело отдает теплоту, калориметр и жидкость принимают.

Q т = Q к + Q ж

Q т = c т m т (T 2 – Q)

Q к = c к m к (Q – T 1)

Q ж = c ж m ж (Q – T 1)

Где Q(тау) – общая конечная температура.

с т m т (T 2 -Q) = с к m к (Q- T 1) + с ж m ж (Q- T 1)

с т = ((Q - Т 1)*(с к m к + с ж m ж)) / m т (Т 2 - Q)

Т = 273 0 + t 0 С

2. ХОД РАБОТЫ.

ВСЕ ВЗВЕШИВАНИЯ ПРОВОДИТЬ С ТОЧНОСТЬЮ ДО 0,1 г.

1. Определите взвешиванием массу внутреннего сосуда, калори­метра m 1 .

2. Налейте во внутренний сосуд калориметра воды, взвесьте внутренний стакан вместе с налитой жидкостью m к.

3. Определите массу налитой воды m = m к - m 1

4. Поместите внутренний сосуд калориметра во внешний и измерь­те начальную температуру воды Т 1 .

5. Выньте из кипящей воды испытуемое тело, быстро перенесите его в калориметр, определив Т 2 -начальную температуру тела, она равна температуре кипящей воды.


6. Перемешивая жидкость в калориметре, выждите, когда перестанет повышаться температура: измерьте окончательную (установившуюся) температуру Q.

7. Выньте из калориметра испытуемое тело, высушите его фильтро­вальной бумагой и взвешиванием на весах определите его массу m 3 .

8. Результаты всех измерений и вычислений занесите в таблицу. Вычисления производить до второго знака после запятой.

9. Составьте уравнение теплового баланса и найдите из него удельную теплоемкость вещества с .

10. По полученным результатам в приложении определить вещество.

11. Вычислите абсолютную и относительную погрешность полученного результата относительно табличного результата по формулам:

;

12. Вывод о проделанной работе.

ТАБЛИЦА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ И ВЫЧИСЛЕНИЙ