Обратимые и необратимые химические реакции. Химическое равновесие. Принцип Ле-Шателье

Все химические реакции можно разбить на две группы: необратимые и обратимые реакции. Необратимые реакции протекают до конца - до полного израсходования одного из реагирующих веществ. Обратимые реакции протекают не до конца: при обратимой реакции ни одно из реагирующих веществ не расходуется полностью. Это различие связано с тем, что необратимая реакция может протекать только в одном направлении. Обратимая же реакция может протекать как в прямом, так и в обратном направлениях.

Рассмотрим два примера.

Пример 1. Взаимодействие между цинком и концентрированной азотной кислотой протекает согласно уравнению:

При достаточном количестве азотной кислоты реакция закончатся только тогда, когда весь цинк растворится. Кроме того, если попытаться провести эту реакцию в обратном направлении - пропускать диоксид азота через раствор нитрата цинка, то металлического цинка и азотной кислоты не получится - данная реакция не может протекать в обратном направлении. Таким образом, взаимодействие цинка с азотной кислотой - необратимая реакция.

Пример 2. Синтез аммиака протекает согласно уравнению:

Если смешать один моль азота с тремя молями водорода, осуществить в системе условия, благоприятствующие протеканию реакции, и по истечении достаточного времени произвести анализ газовой смеси, то результаты анализа покажут, что в системе будет присутствовать не только продукт реакции (аммиак), но и исходные вещества (азот и водород). Если теперь в те же условия в качестве исходного вещества поместить не азото-водородную смесь, а аммиак, то можно будет обнаружить, что часть аммиака разложится на азот и водород, причем конечное соотношение между количествами всех трех веществ будет такое же, как в том случае, когда исходили из смеси азота с водородом. Таким образом, синтез аммиака - обратимая реакция.

В уравнениях обратимых реакций вместо знака равенства можно ставить стрелки; они символизируют протекание реакции как в прямом, так и обратном направлениях.

На рис. 68 показано изменение скоростей прямой и обратной реакций с течением времени. Вначале, при смешении исходных веществ, скорость прямой реакции велика, а скорость обратной ракцни равна нулю, По мере протекания реакции исходные вещества расходуются и их концентрации падают.

Рис. 63. Изменение скорости прямой и обратной реакции с течением времени .

В результате этого уменьшается скорость прямой реакции. Одновременно появляются продукты реакции, и их концентрация возрастает. Вследствие этого начинает идти обратная реакция, причем ее скорость постепенно увеличивается. Когда скорости прямой и обратной реакций становятся одинаковыми, наступает химическое равновесие. Так, в последнем примере устанавливается равновесие между азотом, водородом и аммиаком.

Химическое равновесие называют динамическим равновесием. Этим подчеркивается, что при равновесии протекают и прямая, и обратная реакции, но их скорости одинаковы, вследствие чего изменений в системе не заметно.

Количественной характеристикой химического равновесия служит величина, называемая константой химического равновесия. Рассмотрим ее на примере реакции синтеза иодо-водорода:

Согласно закону действия масс, скорости прямой и обратной реакций выражаются уравнениями:

При равновесии скорости прямой и обратной реакций равны друг другу, откуда

Отношение констант скорости прямой и обратной реакций тоже представляет собой константу. Она называется константой равновесия данной реакции (К):

Отсюда окончательно

В левой части этого уравнения стоят те концентрации взаимодействующих веществ, которые устанавливаются при равновесии- равновесные концентрации. Правая же часть уравнения представляет собой постоянную (при постоянной температуре) величину.

Можно показать, что в общем случае обратимой реакции

константа равновесия выразится уравнением:

Здесь большие буквы обозначают формулы веществ, а маленькие - коэффициенты в уравнении реакции.

Таким образом, при постоянной температуре константа равновесия обратимой реакции представляет собой постоянную величину, показывающую то соотношение между концентрациями продуктов реакции (числитель) и исходных веществ (знаменатель), которое устанавливается при равновесии.

Уравнение константы равновесия показывает, что в условиях равновесия концентрации всех веществ, участвующих в реакции, связаны между собою. Изменение концентрации любого из этих веществ влечет за собою изменения концентраций всех остальных веществ; в итоге устанавливаются новые концентрации, но соотношение между ними вновь отвечает константе равновесия.

Численное значение константы равновесия в первом приближении характеризует выход данной реакции. Например, при выход реакции велик, потому что при этом

т. е. при равновесии концентрации продуктов реакции много больше концентраций исходных веществ, а это и означает, что выход реакции велик. При (по аналогичной причине) выход реакции мал.

В случае гетерогенных реакций в выражение константы равновесия, так же как и в выражение закона действия масс (см. § 58), входят концентрации только тех веществ, которые находятся в газовой или жидкой фазе. Например, для реакции

константа равновесия имеет вид:

Величина константы равновесия зависит от природы реагирующих веществ и от температуры. От присутствия катализаторов она не зависит. Как уже сказано, константа равновесия равна отношению констант скорости прямой и обратной реакции. Поскольку катализатор изменяет энергию активации и прямой, и обратной реакций на одну и ту же величину (см. § 60), то на отношение констант их скорости он не оказывает влияния.

Поэтому катализатор не влияет на величину константы равновесия и, следовательно, не может ни увеличить, ни снизить выход реакции. Он может лишь ускорить или замедлить наступление равновесия.

Среди многочисленных классификаций типов реакций, например таких, которые определяются по тепловому эффекту (экзотермические и эндотермические), по изменению степеней окисления веществ (окислительно-восстановительные), по количеству участвующих в них компонентов (разложения, соединения) и так далее, рассматриваются реакции, протекающие в двух взаимных направлениях, иначе, называемых обратимыми . Альтернативой обратимых реакций являются реакции необратимые, в процессе которых образуется конечный продукт (осадок, газообразное вещество, вода). Среди таких реакций можно указать следующие:

Реакции обмена между растворами солей, в процессе которых образуются либо нерастворимый осадок – СаСО 3:

Са(ОН) 2 + К 2 СО 3 → СаСО 3 ↓ + 2КОН (1)

либо газообразное вещество – СО 2:

3 К 2 СО 3 + 2Н 3 РО 4 →2К 3 РО 4 + 3СО 2 + 3Н 2 О (2)

или получается малодиссоциируемое вещество – Н 2 О:

2NaOH + H 2 SO 4 → Na 2 SO 4 + 2H 2 O (3)

Если рассматривать обратимую реакцию, то она протекает не только в прямом (в реакциях 1,2,3 слева направо), но и в обратном направлении. Примером такой реакции является синтез аммиака из газообразных веществ - водорода и азота:

3H 2 + N 2 ↔ 2NH 3 (4)

Таким образом, химическая реакция называется обратимой, если она протекает не только в прямом(→) , но и в обратном направлении (←) и обозначается символом (↔).

Главной особенностью данного типа реакций является то, что из исходных веществ образуются продукты реакции, но и одновременно из этих же продуктов, обратно, образуются исходные реагенты. Если рассматривать реакцию (4), то в относительную единицу времени одновременно с образованием двух молей аммиака будет происходить их распад с образованием трёх молей водорода и одного моля азота. Обозначим скорость прямой реакции (4) символом V 1 тогда выражение этой скорости примет вид:

V 1 = kˑ [Н 2 ] 3 ˑ , (5)

где величина «k» определяется как константа скорости данной реакции, величины [Н 2 ] 3 и соответствуют концентрациям исходных веществ, возведённых в степени, соответствующие коэффициентам в уравнении реакции. В соответствии с принципом обратимости, скорость обратной реакции примет выражение:

V 2 = kˑ 2 (6)

В начальный момент времени скорость прямой реакции принимает наибольшее значение. Но постепенно концентрации исходных реагентов уменьшаются и скорость реакции замедляется. Одновременно скорость обратной реакции начинает возрастать. Когда скорости прямой и обратной реакции становятся одинаковыми (V 1 = V 2) , наступает состояние равновесия , при котором уже не происходит изменения концентраций как исходных, так и образующихся реагентов.

Следует отметить, что некоторые необратимые реакции не следует понимать в буквальном смысле слова. Приведём пример наиболее часто приводимой реакции взаимодействия металла с кислотой, в частности, цинка с соляной кислотой:

Zn + 2HCl = ZnCl 2 + H 2 (7)

В действительности, цинк, растворяясь в кислоте, образует соль: хлорид цинка и газообразный водород, но по истечении некоторого времени скорость прямой реакции замедляется, поскольку увеличивается концентрация соли в растворе. Когда реакция практически прекращается, в растворе наряду с хлоридом цинка будет присутствовать некоторое количество соляной кислоты, поэтому реакцию (7) следует приводить в следующем виде:

2Zn + 2HCl = 2ZnНCl + H 2 (8)

Или в случае образования нерастворимого осадка, получаемого при сливании растворов Na 2 SO 4 и BaCl 2:

Na 2 SO 4 + BaCl 2 = BaSO 4 ↓ + 2NaCl (9)

осажденная соль BaSO 4 пусть и в малой степени, но будет диссоциировать на ионы:

BaSO 4 ↔ Ba 2+ + SO 4 2- (10)

Поэтому понятия необратимой и необратимой реакций является относительным. Но тем не менее, и в природе и в практической деятельности людей данные реакции имеют большое значение. К примеру, процессы горения углеводородов или более сложных органических веществ, например спирта:

СН 4 + О 2 = СО 2 + Н 2 О (11)

2С 2 Н 5 ОН + 5О 2 = 4СО 2 + 6Н 2 О (12)

являются процессами абсолютно необратимыми. Было бы считать счастливой мечтой человечества, если бы реакции (11) и (12) были бы обратимыми! Тогда бы можно было из СО 2 и Н 2 О опять синтезировать и газ и бензин и спирт! С другой стороны, обратимые реакции, такие как (4) или окисление сернистого газа:

SO 2 + O 2 ↔ SO 3 (13)

являются основными в производстве солей аммония, азотной кислоты, серной кислоты и др. как неорганических, так и органических соединений. Но данные реакции являются обратимыми! И чтобы получать конечные продукты: NH 3 или SO 3 необходимо использовать такие технологические приёмы, как: изменение концентраций реагентов, изменение давления, повышение или понижение температуры. Но это уже будет являться предметом следующей темы: «Смещение химического равновесия».

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

ОБРАТИМЫЕ И НЕОБРАТИМЫЕ РЕАКЦИИ.

Обратимыми в химической кинетике называют такие реакции, которые одновременно и независимо протекают в двух направлениях - прямом и обратном, но с различными скоростями. Для обратимых реакций характерно, что через некоторое время после их начала скорости прямой и обратной реакций становятся равными и наступает состояние химического равновесия.

Все химические реакции обратимы, но при определенных условиях некоторые из них могут протекать только в одном направлении до практически полного исчезновения исходных продуктов. Такие реакции называют необратимыми . Обычно необратимыми бывают реакции, в которых хотя бы один продукт реакции выводится из области реакции (в случае реакции в растворах - выпадает в осадок или выделяется в виде газа), или реакции, которые сопровождаются большим положительным тепловым эффектом. В случае ионных реакций, реакция является практически необратимой, если в результате нее образуется очень малорастворимое или малодиссоциированное вещество.

Рассмотренное здесь понятие обратимости реакции не совпадает с понятием термодинамической обратимости. Обратимая в кинетическом смысле реакция в термодинамическом смысле может протекать необратимо. Для того чтобы реакцию можно было назвать обратимой в термодинамическом смысле, скорость прямого процесса должна бесконечно мало отличаться от скорости обратного процесса и, следовательно, процесс в целом должен протекать бесконечно медленно.

В идеальных газовых смесях и в идеальных жидких растворах скорости простых (одностадийных) реакций подчиняются закону действующих масс . Скорость химической реакции (1.1) описывается уравнением (1.2), а в случае прямой реакции может быть, представлено в виде:

где - константа скорости прямой реакции.

Подобно этому, скорость обратной реакции:

(1.5)

При равновесии , следовательно:

(1.6)

Это уравнение выражает закон действующих масс для химического равновесия в идеальных системах; К - к о н с т а н т а р а в н о в е с и я.

Константа реакции позволяет найти равновесный состав реакционной смеси при данных условиях.

Закон действующих масс для скоростей реакций можно пояснить следующим образом.

Чтобы произошел акт реакции, необходимо столкновение молекул исходных веществ, т.е. молекулы должны сблизиться друг с другом на расстояние порядка атомных размеров. Вероятность найти в некотором малом объеме в данный момент l молекул вещества L , m молекул вещества M и т.д. пропорциональна ..... , следовательно, число столкновений в единице объема за единицу времени пропорционально этой величине; отсюда вытекает уравнение (1.4).

Обратимые и необратимые химические реакции. Химическое равновесие. Смещение равновесия под действием различных факторов

Химическое равновесие

Химические реакции, протекающие в одном направлении, называют необратимыми .

Большинство химических процессов являются обратимыми . Это значит, что при одних и тех же условиях протекают и прямая, и обратная реакции (особенно если речь идет о замкнутых системах).

Например:

а) реакция

$CaCO_3{→}↖{t}CaO+CO_2$

в открытой системе необратима;

б) эта же реакция

$CaCO_3⇄CaO+CO_2$

в замкнутой системе обратима.

Рассмотрим более подробно процессы, протекающие при обратимых реакциях, например, для условной реакции:

На основании закона действующих масс скорость прямой реакции

${υ}↖{→}=k_{1}·C_{A}^{α}·C_{B}^{β}$

Так как со временем концентрации веществ $А$ и $В$ уменьшаются, то и скорость прямой реакции тоже уменьшается.

Появление продуктов реакции означает возможность обратной реакции, причем со временем концентрации веществ $С$ и $D$ увеличиваются, а значит, увеличивается и скорость обратной реакции:

${υ}↖{→}=k_{2}·C_{C}^{γ}·C_{D}^{δ}$

Рано или поздно будет достигнуто состояние, при котором скорости прямой и обратной реакций станут равными

${υ}↖{→}={υ}↖{←}$

Состояние системы, при котором скорость прямой реакции равна скорости обратной реакции, называют химическим равновесием.

При этом концентрации реагирующих веществ и продуктов реакции остаются без изменения. Их называют равновесными концентрациями . На макроуровне кажется, что в целом ничего не изменяется. Но на самом деле и прямой, и обратный процессы продолжают идти, но с равной скоростью. Поэтому такое равновесие в системе называют подвижным и динамическим .

Константа равновесия

Обозначим равновесные концентрации веществ $[A], [B], [C], [D]$.

Тогда так как ${υ}↖{→}={υ}↖{←}, k_{1}·[A]^{α}·[B]^{β}=k_{2}·[C]^{γ}·[D]^{δ}$, откуда

${[C]^{γ}·[D]^{δ}}/{[A]^{α}·[B]^{β}}={k_1}/{k_2}=K_{равн.}$

где $γ, δ, α, β$ — показатели степеней, равные коэффициентам в обратимой реакции; $K_{равн.}$ — константа химического равновесия.

Полученное выражение количественно описывает состояние равновесия и представляет собой математическое выражение закона действующих масс для равновесных систем.

При неизменной температуре константа равновесия — величина постоянная для данной обратимой реакции. Она показывает соотношение между концентрациями продуктов реакции (числитель) и исходных веществ (знаменатель), которое устанавливается при равновесии.

Константы равновесия рассчитывают из опытных данных, определяя равновесные концентрации исходных веществ и продуктов реакции при определенной темпера туре.

Значение константы равновесия характеризует выход продуктов реакции, полноту ее протекания. Если получают $K_{равн.} >> 1$, это означает, что при равновесии $[C]^{γ}·[D]^{δ} >> [A]^{α}·[B]^{β}$, т. е. концентрации продуктов реакции преобладают над концентрациями исходных веществ, а выход продуктов реакции большой.

При $K_{равн.}

$CH_3COOC_2H_5+H_2O⇄CH_3COOH+C_2H_5OH$

константа равновесия

$K_{равн.}={·}/{·}$

при $20°С$ имеет значение $0.28$ (т.е. меньше $1$). Это означает, что значительная часть эфира не гидролизовалась.

В случае гетерогенных реакций в выражение константы равновесия входят концентрации только тех веществ, которые находятся в газовой или жидкой фазе. Например, для реакции

константа равновесия выражается так:

$K_{равн.}={^2}/{}$

Значение константы равновесия зависит от природы реагирующих веществ и темпера туры.

От присутствия катализатора константа не зависит, по скольку он изменяет энергию активации и прямой, и обратной реакции на одну и ту же величину. Катализатор может лишь ускорить наступление равновесия, не влияя на значение константы равновесия.

Смещение равновесия под действием различных факторов

Состояние равновесия сохраняется сколь угодно долго при неизменных внешних условиях: температуре, концентрации исходных веществ, давлении (если в реакции участвуют или образуются газы).

Изменяя эти условия, можно перевести систему из одного равновесного состояния в другое, отвечающее новым условиям. Такой переход называют смещением или сдвигом равновесия .

Рассмотрим разные способы смещения равновесия на примере реакции взаимодействия азота и водорода с образованием аммиака:

$N_2+3H_2⇄2HN_3+Q$

$K_{равн.}={^2}/{·^3}$

Влияние изменения концентрации веществ

При добавлении в реакционную смесь азота $N_2$ и водорода $Н_2$ увеличивается концентрация этих газов, а значит, увеличивается скорость прямой реакции. Равновесие смещается вправо, в сторону продукта реакции, т.е. в сторону аммиака $NH_3$.

Этот же вывод можно сделать, анализируя выражение для константы равновесия. При увеличении концентрации азота и водорода знаменатель увеличивается, а так как $K_{равн.}$ — величина постоянная, должен увеличиваться числитель. Таким образом, в реакционной смеси увеличится количество продукта реакции $NH_3$.

Увеличение же концентрации продукта реакции аммиака $NH_3$ приведет к смещению равновесия влево, в сторону образования исходных веществ. Этот вывод можно сделать на основании аналогичных рассуждений.

Влияние изменения давления

Изменение давления оказывает влияние только на те системы, где хотя бы одно из веществ находится в газообразном состоянии. При увеличении давления уменьшается объем газов, а значит, увеличивается их концентрация.

Предположим, что давление в замкнутой системе повысили, например, в $2$ раза. Это значит, что концентрации всех газообразных веществ ($N_2, H_2, NH_3$) в рассматриваемой нами реакции возрастут в $2$ раза. В этом случае числитель в выражении для $K_{равн.}$ увеличится в 4 раза, а знаменатель — в $16$ раз, т.е. равновесие нарушится. Для его восстановления должна увеличиться концентрация аммиака и должны уменьшиться концентрации азота и водорода. Равновесие сместится вправо. Изменение давления практически не сказывается на объеме жидких и твердых тел, т.е. не изменяет их концентрацию. Следовательно, состояние химического равновесия реакций, в которых не участвуют газы, не зависит от давления.

Влияние изменения температуры

При повышении температуры, как вы знаете, скорости всех реакций (экзо- и эндотермических) увеличиваются. Причем повышение температуры больше сказывается на скорости тех реакций, которые имеют большую энергию активации, а значит, эндотермических.

Таким образом, скорость обратной реакции (в нашем примере эндотермической) увеличивается сильнее, чем скорость прямой. Равновесие сместится в сторону процесса, сопровождающегося поглощением энергии.

Направление смещения равновесия можно предсказать, пользуясь принципом Ле Шателье (1884 г.):

Если на систему, находящуюся в равновесии, оказывается внешнее воздействие (изменяется концентрация, давление, температура), то равновесие смещается в ту сторону, которая ослабляет данное воздействие.

Сделаем выводы:

  • при увеличении концентрации реагирующих веществ химическое равновесие системы смещается в сторону образования продуктов реакции;
  • при увеличении концентрации продуктов реакции химическое равновесие системы смещается в сторону образования исходных веществ;
  • при увеличении давления химическое равновесие системы смещается в сторону той реакции, при которой объем образующихся газообразных веществ меньше;
  • при повышении температуры химическое равновесие системы смещается в сторону эндотермической реакции;
  • при понижении температуры - в сторону экзотермического процесса.

Принцип Ле Шателье применим не только к химическим реакциям, но и ко многим другим процессам: испарению, конденсации, плавлению, кристаллизации и др. При производстве важнейших химических продуктов принцип Ле Шателье и расчеты, вытекающие из закона действующих масс, дают возможность находить такие условия для проведения химических процессов, которые обеспечивают максимальный выход желаемого вещества.

Обратимые реакции - химические реакции, в данных условиях протекающие одновременно в двух противоположных направлениях (прямом и обратном), исходные вещ-ва превращ в продукты не полностью. например: 3H 2 + N 2 ⇆ 2NH 3

Направление обратимых реакций зависит от концентраций веществ - участников реакции. По завершении обратимой реакции, т. е. при достижении химического равновесия , система содержит как исходные вещества, так и продукты реакции.

Простая (одностадийная) обратимая реакция состоит из двух происходящих одновременно элементарных реакций, которые отличаются одна от другой лишь направлением химического превращения. Направление доступной непосредственному наблюдению итоговой реакции определяется тем, какая из этих взаимно-обратных реакций имеет большую скорость. Например, простая реакция

N 2 O 4 ⇆ 2NO 2

складывается из элементарных реакций

N 2 O 4 ⇆ 2NO 2 и 2NO 2 ⇆ N 2 O 4

Для обратимости сложной (многостадийной) реакции, необходимо, чтобы были обратимы все составляющие её стадии.

Для обратимых реакций уравнение принято записывать следующим образом А + В АВ.

Две противоположно направленные стрелки указывают на то, что при одних и тех же условиях одновременно протекает как прямая, так и обратная реакция

Необратимыми называют такие химические процессы, продукты которых не способны реагировать друг с другом с образованием исходных веществ. С точки зр. Термодинамики – исходные вещ-вы полностью превр в родукты. Примерами необратимых реакций может служить разложение бертолетовой соли при нагревании 2КСlО3 > 2КСl + ЗО2,

Необратимыми называются такие реакции, при протекании которых:

1) образующиеся продукты уходят из сферы реакции - выпадают в виде осадка, выделяются в виде газа, например ВаСl 2 + Н 2 SО 4 = ВаSО 4 ↓ + 2НСl Na 2 CO 3 + 2HCl = 2NaCl + CO 2 ↓ + H 2 O

2) образуется малодиссоциированное соединение, напри­мер вода: НСl + NаОН = Н 2 О + NаСl

3) реакция сопровождается большим выделением энергии, например горение магния

Mg + 1 / 2 О 2 = МgО, ∆H = -602,5 кДж / моль

Хи­ми­че­ское рав­но­ве­сие – это со­сто­я­ние ре­ак­ци­он­ной си­сте­мы, в ко­то­ром ско­ро­сти пря­мой и об­рат­ной ре­ак­ции равны.

Рав­но­вес­ная кон­цен­тра­ция ве­ществ – это кон­цен­тра­ции ве­ществ в ре­ак­ци­он­ной смеси, на­хо­дя­щих­ся в со­сто­я­нии хи­ми­че­ско­го рав­но­ве­сия. Рав­но­вес­ная кон­цен­тра­ция обо­зна­ча­ет­ся хи­ми­че­ской фор­му­лой ве­ще­ства, за­клю­чен­ной в квад­рат­ные скоб­ки.

На­при­мер, сле­ду­ю­щая за­пись обо­зна­ча­ет, что рав­но­вес­ная кон­цен­тра­ция во­до­ро­да в рав­но­вес­ной си­сте­ме со­став­ля­ет 1 моль/л.

Хи­ми­че­ское рав­но­ве­сие от­ли­ча­ет­ся от при­выч­но­го для нас по­ня­тия «рав­но­ве­сие». Хи­ми­че­ское рав­но­ве­сие – ди­на­ми­че­ское. В си­сте­ме, на­хо­дя­щей­ся в со­сто­я­нии хи­ми­че­ско­го рав­но­ве­сия, про­ис­хо­дят и пря­мая, и об­рат­ная ре­ак­ции, но их ско­ро­сти равны, и по­это­му кон­цен­тра­ции участ­ву­ю­щих ве­ществ не ме­ня­ют­ся. Хи­ми­че­ское рав­но­ве­сие ха­рак­те­ри­зу­ет­ся кон­стан­той рав­но­ве­сия, рав­ной от­но­ше­нию кон­стант ско­ро­стей пря­мой и об­рат­ной ре­ак­ций.

Кон­стан­ты ско­ро­сти пря­мой и об­рат­ной ре­ак­ции – это ско­ро­сти дан­ной ре­ак­ции при кон­цен­тра­ци­ях ис­ход­ных для каж­дой из них ве­ществ в рав­ных еди­ни­цах. Также кон­стан­та рав­но­ве­сия равна от­но­ше­нию рав­но­вес­ных кон­цен­тра­ций про­дук­тов пря­мой ре­ак­ции в сте­пе­нях сте­хио­мет­ри­че­ских ко­эф­фи­ци­ен­тов к про­из­ве­де­нию рав­но­вес­ных кон­цен­тра­ций ре­а­ген­тов.

Н2+I2 = 2НI

Если , то в си­сте­ме боль­ше ис­ход­ных ве­ществ. Если , то в си­сте­ме боль­ше про­дук­тов ре­ак­ции. Если кон­стан­та рав­но­ве­сия зна­чи­тель­но боль­ше 1, такую ре­ак­цию на­зы­ва­ют необ­ра­ти­мой.

Положение химического равновесия зависит от следующих параметров реакции: температуры, давления и концентрации веществ. Влияние, которое оказывают эти факторы на химическую реакцию, подчиняются закономерности, которая была в общем виде высказана в 1884 г. французским физико-химиком Ле-Шателье, подтверждена в том же году голландским физико-химиком Вант-Гоффом. Современная формулировка принципа Ле-Шателье такова: если система находится в со стоянии равновесия, то любое воздействие, которое выражается в изменении одного из факторов, определяющих равновесие, вызывает в ней изменение, стремящееся ослабить это воздействие.

В принципе Ле-Шателье речь идет о смещении состояния динамического химического равновесия, этот принцип называется также принципом подвижного равновесия, или принципом смещения равновесия.

Рассмотрим использование этого принципа для различных случаев:

Влияние температуры. При изменении темпер сдвиг хим-о равновесия определяется знаком теплового эффекта хим-й реакции. В случае эндотермич реакции, т. е. реакции, идущей с поглощением тепла, повышение температуры способствует ее протеканию, поскольку в ходе реакции температура понижается. В результате равновесие смещается вправо, концентрации продуктов увеличиваются, их выход растет. Если температура понижается, то наблюдается обратная картина: равновесие смещается влево (в сторону обратной реакции, протекающей с выделением тепла), концентрация и выход продуктов уменьшаются.

Для экзотермической реакции, наоборот, повышение температуры приводит к смещению равновесия влево, а понижение температуры - к смещению равновесия вправо.

Изменения концентр продуктов и реагентов связаны с тем, что при изменении темпер изменяется константа равновесия реакции. Увеличение константы равновес приводит к повыш выхода продуктов, уменьшение - к понижению.

Так, например, повышение температуры в случае эндотермического процесса разложения карбоната кальция CaCO 3 (т) Û CaO(т)+ CO 2 (г) − Q вызывает смещение равновесия вправо, а в случае экзотермической реакции распада монооксида азота на простые вещества
2NO Û N 2 + O 2 +Q повышение температуры смещает равновесие влево, т. е. способствует образованию NO.

Влияние давления. Давление оказывает заметное влияние на состояние химического равновесия только в тех случаях, когда хотя бы один из участников хим-й реакции - газ. Повыш давления в таких сис-х сопровождается уменьш объема и увелич концентрации всех газообразных участников реакции.

Если в ходе прямой реакции количество газообразных веществ увеличивается, то повышение давления приводит к смещению равновесия влево (количество газов уменьшается при обратной реакции). Если в ходе реакции количество газообразных веществ уменьшается, при повышении давления равновесие смещается вправо. Если количества газообразных реагентов и продуктов равны между собой, изменение давления не приводит к смещению химического равновесия.

Следует отметить, что изменение давления не оказывает влияния на константу равновесия.

Влияние концентрации. Согласно принципу Ле-Шателье, повышение концентрации одного из участников реакции должно привести к его расходованию. Таким образом, если в систему при V = const добавлять реагент, равновесие сместится вправо, а если продукт реакции - влево. Удаление того или иного вещества из системы (уменьшение его концентрации) дает обратный эффект.

Все сказанное выше относится и к жидким, и к газообразным растворам (смесям газов)