Выражение закона кулона. Кулоновская сила является силой притяжения, если знаки зарядов разные и силой отталкивания, если знаки зарядов одинаковые

Тема 1.1 ЭЛЕКТРИЧЕСКИЕ ЗАРЯДЫ.

Раздел 1 ОСНОВЫ ЭЛЕКТРОДИНАМИКИ

1. Электризация тел. Понятие о величине заряда.

Закон сохранения заряда.

2. Силы взаимодействия между зарядами.

Закон Кулона.

3. Диэлектрическая проницаемость среды.

4. Международная система единиц в электричестве.

1. Электризация тел. Понятие о величине заряда.

Закон сохранения заряда.

Если две поверхности привести в плотное соприкосновение, то возможен переход электронов с одной поверхности на другую, при этом на этих поверхностях появляются электрические заряды.

Это явление называется ЭЛЕКТРИЗАЦИЕЙ. При трении площадь плотного соприкосновения поверхностей увеличивается, увеличивается и величина заряда на поверхности – такое явление называют ЭЛЕКТРИЗАЦИЕЙ ТРЕНИЕМ.

В процессе электризации происходит перераспределение зарядов, в результате которого обе поверхности заряжаются равными по величине, противоположными по знаку зарядами.

Т.к. все электроны имеют одинаковые заряды (отриц.) е = 1,6 10Кл, то для того, чтобы определить величину заряда на поверхности (q), необходимо знать, сколько электронов в избытке или недостатке на поверхности (N) и заряд одного электрона.

В процессе электризации новые заряды не появляются и не исчезают, а только происходит их перераспределение между телами или частями тела, поэтому суммарный заряд замкнутой системы тел остается постоянным, в этом и заключается смысл ЗАКОНА СОХРАНЕНИЯ ЗАРЯДА.

2. Силы взаимодействия между зарядами.

Закон Кулона.

Электрические заряды взаимодействуют между собой, находясь на расстоянии, при этом одноименные заряды отталкиваются, а разноименные – притягиваются.

Впервые выяснил опытным путем отчего зависит сила взаимодействия между зарядами французский ученый Кулон и вывел закон, названный законом КУЛОНА. Закон фундаментальный т.е. основан на опытах. При выводе этого закона Кулон использовал крутильные весы.

3) k – коэффициент, выражающий зависимость от окружающей среды.

Формула закона Кулона.

Сила взаимодействия между двумя неподвижными точечными зарядами прямо пропорциональны произведению величин этих зарядов и обратно пропорциональна квадрату расстояний между ними, и зависит от среды, в которой находятся эти заряды, и направлена вдоль прямой, соединяющей центры этих зарядов.

3. Диэлектрическая проницаемость среды.

Е - диэлектрическая проницаемость среды, зависит от окружающей заряды среды.

Е = 8,85*10 - физическая постоянная, диэлектрическая проницаемость вакуума.

Е – относительная диэлектрическая проницаемость среды, показывает во сколько раз сила взаимодействия между точечными зарядами в вакууме больше чем в данной среде. В вакууме самое сильное взаимодействие между зарядами.


4. Международная система единиц в электричестве.

Основной единицей для электричества в системе «СИ» является сила тока в 1А, все остальные единицы измерения являются производными от 1Ампера.

1Кл – количество электрического заряда, переносимого заряженными частицами через поперечное сечение проводника при силе тока в 1А за 1с.

Тема 1.2 ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

1. Электрическое поле – как особый вид материи.

6. Связь разности потенциалов с напряженностью электрического поля.

1. Электрическое поле – как особый вид материи.

В природе как вид материи существует электромагнитное поле. В разных случаях электромагнитное поле проявляет себя по - разному, так например около неподвижных зарядов проявляет себя только электрическое поле, которое называют электростатическим. Около подвижных зарядов можно обнаружить как электрическое, так и магнитное поля, которые в совокупности представляют ЭЛЕКТРОМАГНИТНЫЕ ПОЛЯ.

Рассмотрим свойства электростатических полей:

1) Электростатическое поле создается неподвижными зарядами, обнаружить такие поля можно

с помощью пробных зарядов (небольшой по величине положительный заряд), т.к. только на них электрическое поле оказывает силовое действие, которое подчиняется закону Кулона.

2. Напряженность электрического поля.

Эл.поле как вид материи обладает энергией, массой, распространяется в пространстве с конечной скоростью и теоретических границ не имеет.

Практически считается, что поля нет если оно не оказывает заметного действия на пробные заряды.

Так как обнаружить поле можно с помощью силового действия на пробные заряды, то основной характеристикой электрического поля является напряженность.

Если в одну и ту же точку электрического поля вносить разные по величине пробные заряды, то между действующей силой и величиной пробного заряда прямая пропорциональная зависимость.

Коэффициентом пропорциональности между действующей силой и величиной заряда является напряженность Е.

Е = -формула расчета напряженности электрического поля, если q = 1 Кл, то | E | = | F |

Напряженность является силовой характеристикой точек электрического поля, т.к. она численно равна силе, действующей на заряд в 1 Кл в данной точке электрического поля.

Напряженность – величина векторная, вектор напряженности по направлению совпадает с вектором силы, действующей на положительный заряд в данной точке электрического поля.

3. Линии напряженности электрического поля. Однородное электрическое поле.

Для того, чтобы наглядно можно было изображать электрическое поле, т.е. графически, используют линии напряженности электрического поля. Это такие линии, иначе называемые силовыми линиями, касательные к которым по направлению совпадают с векторами напряженности в точках электрического поля через которые эти линии проходят,

Линии напряженности обладают следующими свойствами:

1) Начинаются на полож. зарядах, заканчиваются – на отрицательных, или начинаются на положител. зарядах и уходят в бесконечность, или приходят из бесконечности и заканчиваются на положительных зарядах..

2) Эти линии непрерывны и нигде не пересекаются.

3) Густота линий (кол-во линий на единицу площади поверхности) и напряженность электрического поля находятся в прямой и пропорциональной зависимости.

В однородном электрическом поле напряженность во всех точках поля одинакова, графически такие поля изображаются параллельными линиями на равном расстоянии друг от друга. Такое поле можно получить между двумя параллельными плоскими заряженными пластинами на маленьком расстоянии друг от друга.

4. Работа по перемещению заряда в электрическом поле.

Поместим в однородное электрическое поле электрический заряд. Со стороны поля на заряд будут действовать силы. Если заряд перемещать, то может совершаться работа.

Совершенная работа на участках:

А = q E d - формула расчета работы по перемещению заряда в электрическом поле.

Вывод: Работа по перемещению заряда в электрическом поле от формы траектории не зависит, а она зависит от величины перемещаемого заряда (q) , напряженности поля (Е), а также от выбора начальной и конечной точек перемещения (d).

Если заряд в электрическом поле перемещать по замкнутому контуру, то совершаемая работа будет равна 0. Такие поля называются потенциальными полями. Тела в таких полях обладают потенциальной энергией, т.о. электрический заряд в любой точке электрического поля обладает энергией и совершаемая работа в электрическом поле равна разности потенциальных энергий заряда в начальной и конечной точках перемещения.

5. Потенциал. Разность потенциалов. Напряжение.

Если в данную точку электрического поля помещать разные по величине заряды, то потенциальная энергия заряда и его величина находятся в прямой пропорциональной зависимости.

-(фи) потенциал точки электрического поля

Потенциал является энергетической характеристикой точек электрического поля, т.к. он численно равен потенциальной энергии заряда в 1 Кл в данной точке электрического поля.

На равных расстояниях от точечного заряда потенциалы точек поля одинаковы. Эти точки образуют поверхность равного потенциала, и такие поверхности называются эквипотенциальными поверхностями. На плоскости это окружности, в пространстве – это сферы.

Напряжение

Формулы расчета работы по перемещению заряда в электрическом поле.

1В – напряжение между точками электрического поля при перемещении в которых заряда в 1Кл совершается работа в 1 Дж.

Формула, устанавливающая связь между напряженностью электрического поля, напряжением и разностью потенциалов.

Напряженность численно равна напряжению или разности потенциалов между двумя точками поля взятыми вдоль одной силовой линии на расстоянии 1м. Знак (-) означает, что вектор напряженности всегда направлен в сторону точек поля с уменьшающимся потенциалом.

Два точечных заряда действуют друг на друга с силой, которая обратно пропорциональна квадрату расстояния между ними и прямо пропорциональна произведению их зарядов (без учета знака зарядов)

В различных средах, например в воздухе и в воде, два точечных заряда взаимодействуют с разной силой. Относительная диэлектрическая проницаемость среды характеризуют это различие. Это известная табличная величина . Для воздуха .

Постоянная k определяется как

Направление силы Кулона

Согласно третьему закону Ньютона , силы одной природы возникают попарно, равны по величине, противоположны по направлению. Если взаимодействуют два неодинаковых заряда, сила, с которой больший заряд действует на меньший (В на А) равна силе, с которой меньший действует на больший (А на В).

Интересно, что у различных законов физики есть некоторые общие черты. Вспомним закон тяготения . Сила гравитации также обратно пропорциональны квадрату расстояния, но уже между массами , и невольно возникает мысль, что в этой закономерности таится глубокий смысл. До сих пор никому не удалось представить тяготение и электричество как два разных проявления одной и той же сущности.

Сила и тут изменяется обратно пропорционально квадрату расстояния, но разница в величине электрических сил и сил тяготения поразительна. Пытаясь установить общую природу тяготения и электричества, мы обнаруживаем такое превосходство электрических сил над силами тяготения, что трудно поверить, будто у тех и у других один и тот же источник. Как можно говорить, что одно действует сильнее другого? Ведь все зависит от того, какова масса и каков заряд. Рассуждая о том, насколько сильно действует тяготение, вы не вправе говорить: "Возьмем массу такой-то величины", потому что вы выбираете ее сами. Но если мы возьмем то, что предлагает нам сама Природа (ее собственные числа и меры, которые не имеют ничего общего с нашими дюймами, годами, с нашими мерами), тогда мы сможем сравнивать. Мы возьмем элементарную заряженную частицу, такую, например, как электрон. Две элементарные частицы, два электрона, за счет электрического заряда отталкивают друг друга с силой, обратно пропорциональной квадрату расстояния между ними, а за счет гравитации притягиваются друг к другу опять-таки с силой, обратно пропорциональной квадрату расстояния.

Вопрос: каково отношение силы тяготения к электрической силе? Тяготение относится к электрическому отталкиванию, как единица к числу с 42 нулями. Это вызывает глубочайшее недоумение. Откуда могло взяться такое огромное число?

Люди ищут этот огромный коэффициент в других явлениях природы. Они перебирают всякие большие числа, а если вам нужно большое число, почему не взять, скажем, отношение диаметра Вселенной к диаметру протона - как ни удивительно, это тоже число с 42 нулями. И вот говорят: может быть, этот коэффициент и равен отношению диаметра протона к диаметру Вселенной? Это интересная мысль, но, поскольку Вселенная постепенно расширяется, должна меняться и постоянная тяготения. Хотя эта гипотеза еще не опровергнута, у нас нет никаких свидетельств в ее пользу. Наоборот, некоторые данные говорят о том, что постоянная тяготения не менялась таким образом. Это громадное число по сей день остается загадкой.

Заряды и электричество - это термины, обязательные для тех случаев, когда наблюдается взаимодействие заряженных тел. Силы отталкивания и притяжения словно исходят от заряженных тел и распространяются одновременно во всех направлениях, постепенно затухая на расстоянии. Эту силу в свое время открыл известный французский естествоиспытатель Шарль Кулон, и правило, которому подчиняются заряженные тела, с тех пор называется Закон Кулона.

Шарль Кулон

Французский ученый родился во Франции, где получил блестящее образование. Он активно применял полученные знания в инженерных науках и внес значительный вклад теорию механизмов. Кулон является автором работ, в которых изучалась работа ветряных мельниц, статистика различных сооружений, кручение нитей под влиянием внешних сил. Одна из этих работ помогла открыть закон Кулона-Амонтона, объясняющий процессы трения.

Но основной вклад Шарль Кулон внес в изучение статического электричества. Опыты, которые проводил этот французский ученый, подвели его к пониманию одного из наиболее фундаментальных законов физики. Именно ему мы обязаны знанием природы взаимодействия заряженных тел.

Предыстория

Силы притяжения и отталкивания, с которыми электрические заряды действуют друг на друга, направлены вдоль прямой, соединяющей заряженные тела. С увеличением расстояния эта сила ослабевает. Спустя столетие после того, как Исаак Ньютон открыл свой всемирный закон тяготения, французский ученый Ш. Кулон исследовал экспериментальным путем принцип взаимодействия между заряженными телами и доказал, что природа такой силы аналогична силам тяготения. Более того, как оказалось, взаимодействующие тела в электирическом поле ведут себя так же, как и любые тела, обладающие массой, в гравитационном поле.

Прибор Кулона

Схема прибора, при помощи которого Шарль Кулон делал свои измерения, приведена на рисунке:

Как можно видеть, по существу эта конструкция не отличается от того прибора, которым в свое время Кавендиш измерял величину гравитационной постоянной. Изолирующий стержень, подвешенный на тонкой нити, заканчивается металлическим шариком, которому сообщен определенный электрический заряд. К шарику приближают другой металлический шарик, а затем, по мере сближения, измеряют силу взаимодействия по степени закручивания нити.

Эксперимент Кулона

Кулон предположил, что к силе, с которой закручивается нить, можно применить уже известный тогда Закон Гука. Ученый сравнил изменение силы при различной дистанции одного шарика от другого и установил, что сила взаимодействия изменяет свое значение обратно пропорционально квадрату дистанции между шариками. Кулон сумел изменять значения заряженного шарика от q до q/2, q/4, q/8 и так далее. При каждом изменении заряда сила взаимодействия пропорционально меняла свое значение. Так, постепенно, было сформулировано правило, которое впоследствии было названо «Закон Кулона».

Определение

Экспериментальным путем французский ученый доказал, что силы, с которыми взаимодействуют два заряженных тела, пропорциональны произведению их зарядов и обратно пропорциональны квадрату расстояния между зарядами. Это утверждение и представляет собой закон Кулона. В математическом виде он может быть выражен так:

В этом выражении:

  • q- количество заряда;
  • d - расстояние между заряженными телами;
  • k- электрическая постоянная.

Значение электрической постоянной во многом зависит от выбора единицы измерения. В современной системе величина электрического заряда измеряется в кулонах, а электрическая постоянная, соответственно, в ньютон×м 2 / кулон 2 .

Последние измерения показали, что данный коэффициент должен учитывать диэлектрическую проницаемость среды, в которой проводится опыт. Сейчас величину показывают в виде соотношения k=k 1 /e, где к 1 является уже знакомой нам электрической константой, а не является показателем диэлектрической проницаемости. В условиях вакуума эта величина равна единице.

Выводы из закона Кулона

Ученый экспериментировал с различной величиной зарядов, проверяя взаимодействие между телами с различной величиной заряда. Разумеется, измерить электрический заряд в каких-либо единицах он не мог - не хватало ни знаний, ни соответствующих приборов. Шарль Кулон смог разделять снаряд, прикасаясь к заряженному шарику незаряженным. Так он получал дробные значения исходного заряда. Ряд опытов показал, что электрический заряд сохраняется, происходит обмен без увеличения или уменьшения количества заряда. Этот фундаментальный принцип лег в основу закона сохранения электрического заряда. В настоящее время доказано, что этот закон соблюдается и в микромире элементарных частиц и в макромире звезд и галактик.

Условия, необходимые для выполнения закона Кулона

Для того чтобы закон выполнятся с большей точностью, необходимо выполнение следующих условий:

  • Заряды должны быть точечными. Другими словами, дистанция между наблюдаемыми заряженными телами должна быть намного больше их размеров. Если заряженные тела имеют сферическую форму, то можно считать, что весь заряд находится в точке, которая является центром сферы.
  • Измеряемые тела должна быть неподвижными. Иначе на движущийся заряд будут влиять многочисленные сторонние факторы, например, сила Лоренца, которая придает заряженному телу дополнительное ускорение. А также магнитное поле движущегося заряженного тела.
  • Наблюдаемые тела должны находиться в вакууме, чтобы избежать воздействия потоков воздушных масс на результаты наблюдений.

Закон Кулона и квантовая электродинамика

С точки зрения квантовой электродинамики взаимодействие заряженных тел происходит посредством обмена виртуальными фотонами. Существование таких ненаблюдаемых частиц и нулевой массы, но не нулевыго заряда косвенно подтверждается принципом неопределенности. Согласно этому принципу, виртуальный фотон может существовать между мгновениями испускания такой частицы и ее поглощения. Чем меньше расстояние между телами, тем меньше времени затрачивает фотон на прохождение пути, следовательно, тем больше энергия испускаемых фотонов. При небольшой дистанции между наблюдаемыми зарядами принцип неопределенности допускает обмен и коротковолновыми и длинноволновыми частицами, а при больших расстояниях коротковолновые фотоны в обмене не участвуют.

Есть ли пределы применения закона Кулона

Закон Кулона полностью объясняет поведение двух точечных зарядов в вакууме. Но когда речь идет о реальных телах, следует принимать во внимание объемные размеры заряженных тел и характеристики среды, в которой ведется наблюдение. Например, некоторые исследователи наблюдали, что тело, несущее в себе небольшой заряд и принудительно внесенное в электрическое поле другого объекта с большим зарядом, начинает притягиваться к этому заряду. В этом случае утверждение, что одноименно заряженные тела отталкиваются, дает сбой, и следует искать другое объяснение наблюдаемому явлению. Скорее всего, здесь не идет речь о нарушении закона Кулона или принципа сохранения электрического заряда - возможно, что мы наблюдаем неизученные до конца явления, объяснить которые наука сможет немного позже.

Закон

Зако́н Куло́на

Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними.

Иначе: Два точечных заряда в вакууме действуют друг на друга с силами, которые пропорциональны произведению модулей этих зарядов, обратно пропорциональны квадрату расстояния между ними и направлены вдоль прямой, соединяющей эти заряды. Эти силы называются электростатическими (кулоновскими).

    их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца , действующая на другой движущийся заряд;

    взаимодействие в вакууме .

где - сила, с которой заряд 1 действует на заряд 2; - величина зарядов; - радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами - ); - коэффициент пропорциональности. Таким образом, закон указывает, что одноимённые заряды отталкиваются (а разноимённые - притягиваются).

В СГСЭ единица измерения заряда выбрана таким образом, что коэффициент k равен единице.

В Международной системе единиц (СИ) одной из основных единиц является единица силы электрического тока ампер , а единица заряда - кулон - производная от него. Величина ампера определена таким образом, что k = c2·10−7 Гн /м = 8,9875517873681764·109 Н ·м2/Кл 2 (или Ф−1·м). В СИ коэффициент k записывается в виде:

где ≈ 8,854187817·10−12 Ф/м - электрическая постоянная .

Закон Кулона это:

Закон Кулона О законе сухого трения см. Закон Амонтона - Кулона Магнитостатика Электродинамика Электрическая цепь Ковариантная формулировка Известные учёные

Зако́н Куло́на - это закон, описывающий силы взаимодействия между точечными электрическими зарядами.

Был открыт Шарлем Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона:

Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними

Иначе: Два точечных заряда в вакууме действуют друг на друга с силами, которые пропорциональны произведению модулей этих зарядов, обратно пропорциональны квадрату расстояния между ними и направлены вдоль прямой, соединяющей эти заряды. Эти силы называются электростатическими (кулоновскими).

Важно отметить, что для того, чтобы закон был верен, необходимы:

  1. точечность зарядов - то есть расстояние между заряженными телами много больше их размеров - впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;
  2. их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд;
  3. взаимодействие в вакууме.

Однако с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.

В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:

где - сила, с которой заряд 1 действует на заряд 2; - величина зарядов; - радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами -); - коэффициент пропорциональности. Таким образом, закон указывает, что одноимённые заряды отталкиваются (а разноимённые - притягиваются).

Коэффициент k

В СГСЭ единица измерения заряда выбрана таким образом, что коэффициент k равен единице.

В Международной системе единиц (СИ) одной из основных единиц является единица силы электрического тока ампер, а единица заряда - кулон - производная от него. Величина ампера определена таким образом, что k = c2·10-7 Гн/м = 8,9875517873681764·109 Н·м2/Кл2 (или Ф−1·м). В СИ коэффициент k записывается в виде:

где ≈ 8,854187817·10−12 Ф/м - электрическая постоянная.

В однородном изотропном веществе в знаменатель формулы добавляется относительная диэлектрическая проницаемость среды ε.

Закон Кулона в квантовой механике

В квантовой механике закон Кулона формулируется не при помощи понятия силы, как в классической механике, а при помощи понятия потенциальной энергии кулоновского взаимодействия. В случае, когда рассматриваемая в квантовой механике система содержит электрически заряженные частицы, к оператору Гамильтона системы добавляются слагаемые, выражающие потенциальную энергию кулоновского взаимодействия, так, как она вычисляется в классической механике.

Так, оператор Гамильтона атома с зарядом ядра Z имеет вид:

Здесь m - масса электрона, е - его заряд, - абсолютная величина радиус-вектора j -го электрона, . Первое слагаемое выражает кинетическую энергию электронов, второе слагаемое - потенциальную энергию кулоновского взаимодействия электронов с ядром и третье слагаемое - потенциальную кулоновскую энергию взаимного отталкивания электронов. Суммирование в первом и втором слагаемом ведется по всем N электронам. В третьем слагаемом суммирование идёт по всем парам электронов, причём каждая пара встречается однократно.

Закон Кулона с точки зрения квантовой электродинамики

Согласно квантовой электродинамике, электромагнитное взаимодействие заряженных частиц осуществляется путём обмена виртуальными фотонами между частицами. Принцип неопределённости для времени и энергии допускает существование виртуальных фотонов на время между моментами их испускания и поглощения. Чем меньше расстояние между заряженными частицами, тем меньшее время нужно виртуальным фотонам для преодоления этого расстояния и следовательно, тем большая энергия виртуальных фотонов допускается принципом неопределенности. При малых расстояниях между зарядами принцип неопределённости допускает обмен как длинноволновыми, так и коротковолновыми фотонами, а при больших расстояниях в обмене участвуют только длинноволновые фотоны. Таким образом, с помощью квантовой электродинамики можно вывести закон Кулона.

История

Впервые исследовать экспериментально закон взаимодействия электрически заряженных тел предложил Г. В. Рихман в 1752-1753 гг. Он намеревался использовать для этого сконструированный им электрометр-«указатель». Осуществлению этого плана помешала трагическая гибель Рихмана.

В 1759 г. профессор физики Санкт-Петербургской академии наук Ф. Эпинус, занявший кафедру Рихмана после его гибели, впервые предположил, что заряды должны взаимодействовать обратно пропорционально квадрату расстояния. В 1760 г. появилось краткое сообщение о том, что Д. Бернулли в Базеле установил квадратичный закон с помощью сконструированного им электрометра. В 1767 г. Пристли в своей «Истории электричества» отметил, что опыт Франклина, обнаружившего отсутствие электрического поля внутри заряженного металлического шара, может означать, что «электрическое притяжение следует точно такому же закону, как и тяготение, то есть квадрату расстояния» . Шотландский физик Джон Робисон утверждал (1822), что в 1769 г. обнаружил, что шары с одинаковым электрическим зарядом отталкиваются с силой, обратно пропорциональной квадрату расстояния между ними, и таким образом предвосхитил открытие закона Кулона (1785).

Примерно за 11 лет до Кулона, в 1771 г., закон взаимодействия зарядов был экспериментально открыт Г. Кавендишем, однако результат не был опубликован и долгое время (свыше 100 лет) оставался неизвестным. Рукописи Кавендиша были вручены Д. К. Максвеллу лишь в 1874 г одним из потомков Кавендиша на торжественном открытии Кавендишской лаборатории и опубликованы в 1879 г.

Сам Кулон занимался исследованием кручения нитей и изобрел крутильные весы. Он открыл свой закон, измеряя с помощью них силы взаимодействия заряженных шариков.

Закон Кулона, принцип суперпозиции и уравнения Максвелла

Закон Кулона и принцип суперпозиции для электрических полей полностью равносильны уравнениям Максвелла для электростатики и. То есть закон Кулона и принцип суперпозиции для электрических полей выполняются тогда и только тогда, когда выполняются уравнения Максвелла для электростатики и, наоборот, уравнения Максвелла для электростатики выполняются тогда и только тогда, когда выполняются закон Кулона и принцип суперпозиции для электрических полей.

Cтепень точности закона Кулона

Закон Кулона - экспериментально установленный факт. Его справедливость неоднократно подтверждалась всё более точными экспериментами. Одним из направлений таких экспериментов является проверка того, отличается ли показатель степени r в законе от 2. Для поиска этого отличия используется тот факт, что если степень точно равна двум, то поле внутри полости в проводнике отсутствует, какова бы ни была форма полости или проводника.

Эксперименты, проведённые в 1971 г. в США Э. Р. Уильямсом, Д. Е. Фоллером и Г. А. Хиллом, показали, что показатель степени в законе Кулона равен 2 с точностью до .

Для проверки точности закона Кулона на внутриатомных расстояниях У. Ю. Лэмбом и Р. Резерфордом в 1947 г. были использованы измерения относительного расположения уровней энергии водорода. Было установлено, что и на расстояниях порядка атомных 10−8 см, показатель степени в законе Кулона отличается от 2 не более чем на 10−9.

Коэффициент в законе Кулона остается постоянным с точностью до 15·10−6.

Поправки к закону Кулона в квантовой электродинамике

На небольших расстояниях (порядка комптоновской длины волны электрона, ≈3.86·10−13 м , где - масса электрона, - постоянная Планка, - скорость света) становятся существенными нелинейные эффекты квантовой электродинамики: на обмен виртуальными фотонами накладывается генерация виртуальных электрон-позитронных (а также мюон-антимюонных и таон-антитаонных) пар, а также уменьшается влияние экранирования (см. перенормировка). Оба эффекта ведут к появлению экспоненциально убывающих членов порядка в выражении для потенциальной энергии взаимодействия зарядов и, как результат, к увеличению силы взаимодействия по сравнению с вычисляемой по закону Кулона. Например, выражение для потенциала точечного заряда в системе СГС, с учётом радиационных поправок первого порядка принимает вид :

где - комптоновская длина волны электрона, - постоянная тонкой структуры и. На расстояниях порядка ~ 10−18 м, где - масса W-бозона, в игру вступают уже электрослабые эффекты.

В сильных внешних электромагнитных полях, составляющих заметную долю от поля пробоя вакуума (порядка ~1018 В/м или ~109 Тл, такие поля наблюдаются, например, вблизи некоторых типов нейтронных звёзд, а именно магнитаров) закон Кулона также нарушается в силу дельбрюковского рассеяния обменных фотонов на фотонах внешнего поля и других, более сложных нелинейных эффектов. Это явление уменьшает кулоновскую силу не только в микро- но и в макромасштабах, в частности, в сильном магнитном поле кулоновский потенциал падает не обратно пропорционально расстоянию, а экспоненциально.

Закон Кулона и поляризация вакуума

Явление поляризации вакуума в квантовой электродинамике заключается в образовании виртуальных электронно-позитронных пар. Облако электронно-позитронных пар экранирует электрический заряд электрона. Экранировка растет с ростом расстояния от электрона, в результате эффективный электрический заряд электрона является убывающей функцией расстояния . Эффективный потенциал, создаваемый электроном с электрическим зарядом, можно описать зависимостью вида. Эффективный заряд зависит от расстояния по логарифмическому закону:

Т. н. постоянная тонкой структуры ≈7.3·10−3;

Т. н. классический радиус электрона ≈2.8·10−13 см..

Эффект Юлинга

Явление отклонения электростатического потенциала точечных зарядов в вакууме от значения закона Кулона известно как эффект Юлинга, который впервые вычислил отклонения от закона Кулона для атома водорода. Эффект Юлинга даёт поправку к лэмбовскому сдвигу 27 мггц.

Закон Кулона и сверхтяжелые ядра

В сильном электромагнитном поле вблизи сверхтяжелых ядер с зарядом осуществляется перестройка вакуума, аналогичная обычному фазовому переходу. Это приводит к поправкам к закону Кулона

Значение закона Кулона в истории науки

Закон Кулона является первым открытым количественным и сформулированным на математическом языке законом для электромагнитных явлений. С открытия закона Кулона началась современная наука об электромагнетизме.

См. также

  • Электрическое поле
  • Дальнодействие
  • Закон Био - Савара - Лапласа
  • Закон притяжения
  • Кулон, Шарль Огюстен де
  • Кулон (единица измерения)
  • Принцип суперпозиции
  • Уравнения Максвелла

Ссылки

  • Закон Кулона (видеурок, программа 10 класса)

Примечания

  1. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика: Учеб. пособ.: Для вузов. В 10 т. Т. 2 Теория поля. - 8-е изд., стереот. - М.: ФИЗМАТЛИТ, 2001. - 536 с. - ISBN 5-9221-0056-4 (Т. 2), Гл. 5 Постоянное электромагнитное поле, п. 38 Поле равномерно движущегося заряда, с 132
  2. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика: Учеб. пособ.: Для вузов. В 10 т. Т. 3. Квантовая механика (нерелятивистская теория). - 5-е изд., стереот. - М.: Физматлит, 2002. - 808 с. - ISBN 5-9221-0057-2 (Т. 3), гл. 3 Уравнение Шредингера, п. 17 Уравнение Шредингера, с. 74
  3. Г. Бете Квантовая механика. - пер. с англ., под ред. В. Л. Бонч-Бруевича, «Мир», М., 1965, Часть 1 Теория строения атома, Гл. 1 Уравнение Шредингера и приближённые методы его решения, с. 11
  4. Р. Е. Пайерлс Законы природы. пер. с англ. под ред. проф. И. М. Халатникова, Государственное издательство физико-математической литературы, М., 1959, тир. 20000 экз., 339 с., Гл. 9 «Электроны при высоких скоростях», п. «Силы при больших скоростях. Другие трудности», c. 263
  5. Л. Б. Окунь … z Элементарное введение в физику элементарных частиц, М., Наука, 1985, Библиотечка «Квант», вып. 45, п. «Виртуальные частицы», с. 57.
  6. Novi Comm. Acad. Sc. Imp. Petropolitanae, v. IV, 1758, p. 301.
  7. Эпинус Ф. Т. У. Теория электричества и магнетизма. - Л.: АН СССР, 1951. - 564 с. - (Классики науки). - 3000 экз.
  8. Abel Socin (1760) Acta Helvetiсa , vol. 4, pages 224-225.
  9. J. Priestley. The History and present state of Electricity with original experiments. London, 1767, p. 732.
  10. John Robison, A System of Mechanical Philosophy (London, England: John Murray, 1822), vol. 4. На стр. 68 Робисон заявляет, что в 1769 он обнародовал свои измерения силы, действующей между сферами с одинаковым зарядом, и описывает также историю исследований в этой области, отмечая имена Эпинуса, Кавендиша и Кулона. На стр. 73 автор пишет, что сила изменяется как x −2,06.
  11. С. Р. Филонович «Кавендиш, Кулон и электростатика», М., «Знание», 1988, ББК 22.33 Ф53, гл. «Судьба закона», с. 48
  12. Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике, вып. 5, «Электричество и магнетизм», пер. с англ., под ред. Я. А. Смородинского, изд. 3, М., Едиториал УРСС, 2004, ISBN 5-354-00703-8 (Электричество и магнетизм), ISBN 5-354-00698-8 (Полное произведение), гл. 4 «Электростатика», п. 1 «Статика», с. 70-71;
  13. Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике, вып. 5, «Электричество и магнетизм», пер. с англ., под ред. Я. А. Смородинского, изд. 3, М., Едиториал УРСС, 2004, ISBN 5-354-00703-8 (Электричество и магнетизм), ISBN 5-354-00698-8 (Полное произведение), гл. 5 «Применения закона Гаусса», п. 10 «Поле внутри полости проводника», с. 106-108;
  14. E. R. Williams, J. E. Faller, H. A. Hill «New Experimental Test of Coulomb’s Law: A Laboratory Upper Limit on the Photon Rest Mass», Phys. Rev. Lett. 26, 721-724 (1971);
  15. W. E. Lamb, R. C. Retherford Fine Structure of the Hydrogen Atom by a Microwave Method (Английский) // Physical Review . - Т. 72. - № 3. - С. 241-243.
  16. 1 2 Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике, вып. 5, «Электричество и магнетизм», пер. с англ., под ред. Я. А. Смородинского, изд. 3, М., Едиториал УРСС, 2004, ISBN 5-354-00703-8 (Электричество и магнетизм), ISBN 5-354-00698-8 (Полное произведение), гл. 5 «Применения закона Гаусса», п. 8 «Точен ли закон Кулона?», с. 103;
  17. CODATA (the Committee on Data for Science and Technology)
  18. Берестецкий, В. Б., Лифшиц, Е. М., Питаевский, Л. П. Квантовая электродинамика. - Издание 3-е, исправленное. - М.: Наука, 1989. - С. 565-567. - 720 с. - («Теоретическая физика», том IV). - ISBN 5-02-014422-3
  19. Neda Sadooghi Modified Coulomb potential of QED in a strong magnetic field (Английский).
  20. Окунь Л. Б. «Физика элементарных частиц», изд. 3-е, М., «Едиториал УРСС», 2005, ISBN 5-354-01085-3, ББК 22.382 22.315 22.3о, гл. 2 «Гравитация. Электродинамика», «Поляризация вакуума», с. 26-27;
  21. «Физика микромира», гл. ред. Д. В. Ширков, М., «Советская энциклопедия», 1980, 528 с., илл., 530.1(03), Ф50, ст. «Эффективный заряд», авт. ст. Д. В. Ширков, стр. 496;
  22. Яворский Б. М. «Справочник по физике для инженеров и студентов вузов» / Б. М. Яворский, А. А. Детлаф, А. К. Лебедев, 8-e изд., перераб. и испр., М.: ООО «Издательство Оникс», ООО «Издательство Мир и образование», 2006, 1056 стр.: илл., ISBN 5-488-00330-4 (ООО «Издательство Оникс»), ISBN 5-94666-260-0 (ООО «Издательство Мир и образование»), ISBN 985-13-5975-0 (ООО «Харвест»), УДК 530(035) ББК 22.3, Я22, «Приложения», «Фундаментальные физические постоянные», с. 1008;
  23. Uehling E.A ., Phys. Rev., 48, 55, (1935)
  24. «Мезоны и поля» С. Швебер, Г. Бете, Ф. Гофман том 1 Поля гл. 5 Свойства уравнения Дирака п. 2. Состояния с отрицательной энергией c. 56, гл. 21 Перенормировка, п. 5 Поляризация вакуума с 336
  25. А. Б. Мигдал «Поляризация вакуума в сильных полях и пионная конденсация», «Успехи физических наук», т. 123, в. 3, 1977 г., ноябрь, с. 369-403;
  26. Спиридонов О. П. «Универсальные физические постоянные», М., «Просвещение», 1984, с. 52-53;

Литература

  1. Филонович С. Р. Судьба классического закона. - М., Наука, 1990. - 240 с., ISBN 5-02-014087-2 (Библиотечка «Квант», вып. 79), тир. 70500 экз.
Категории:
  • Физические законы
  • Электростатика

Закон Кулона

Крутильні терези Кулона

Закон Кулона - один з основних законів електростатики, який визначає величину та напрямок сили взаємодії між двома нерухомими точковими зарядами. Експериментально з задовільною точністю закон вперше встановив Генрі Кавендіш у 1773. Він використовував метод сферичного конденсатора, але не опублікував своїх результатів. У 1785 році закон був встановлений Шарлем Кулоном за допомогою спеціальних крутильних терезів.

Визначення

Електростатична сила взаємодії F 12 двох точкових нерухомих зарядів q 1 та q 2 у вакуумі прямо пропорційна добутку абсолютних значень зарядів і обернено пропорційна квадрату відстані r 12 між ними. F 12 = k ⋅ q 1 ⋅ q 2 r 12 2 {\displaystyle F_{12}=k\cdot {\frac {q_{1}\cdot q_{2}}{r_{12}^{2}}}} ,

у векторній формі:

F 12 = k ⋅ q 1 ⋅ q 2 r 12 3 r 12 {\displaystyle \mathbf {F_{12}} =k\cdot {\frac {q_{1}\cdot q_{2}}{r_{12}^{3}}}\mathbf {r_{12}} } ,

Сила взаємодії направлена вздовж прямої, що з"єднує заряди, причому однойменні заряди відштовхуються, а різнойменні притягуються. Сили, що визначаються законом Кулона адитивні.

Для виконання сформульованого закону необхідно, щоб виконувалися такі умови:

  1. Точковість зарядів - відстань між зарядженими тілами має бути набагато більшою від розмірів тіл.
  2. Нерухомість зарядів. У протилежному випадку потрібно враховувати магнітне поле заряду, що рухається.
  3. Закон сформульовано для зарядів у вакуумі.

Електростатична стала

Коефіцієнт пропорційності k має назву електростатичної сталої. Він залежить від вибору одиниць вимірювання. Так, у Міжнародній системі одиниць (СІ)

K = 1 4 π ε 0 ≈ {\displaystyle k={\frac {1}{4\pi \varepsilon _{0}}}\approx } 8,987742438·109 Н·м2·Кл-2,

де ε 0 {\displaystyle \varepsilon _{0}} - електрична стала. Закон Кулона має вигляд:

F 12 = 1 4 π ε 0 q 1 q 2 r 12 3 r 12 {\displaystyle \mathbf {F} _{12}={\frac {1}{4\pi \varepsilon _{0}}}{\frac {q_{1}q_{2}}{r_{12}^{3}}}\mathbf {r} _{12}} .

Упродовж тривалого часу основною системою одиниць вимірювання була система СГС. Чимало класичної фізичної літератури написано з використанням одного з різновидів системи СГС - гаусової системи одиниць. У ній одиниця заряду обрана таким чином, що k =1, і закон Кулона набирає вигляду:

F 12 = q 1 q 2 r 12 3 r 12 {\displaystyle \mathbf {F} _{12}={\frac {q_{1}q_{2}}{{r}_{12}^{3}}}\mathbf {r} _{12}} .

Аналогічний вигляд закон Кулона має і в атомній системі одиниць, що використовується для в атомній фізиці та для квантовохімічних розрахунків.

Закон Кулона в середовищі

У середовищі сила взаємодії між зарядами зменшується завдяки явищу поляризації. Для однорідного ізотропного середовища це зменшення пропорційне певній характерній для цього середовища величині, яку називають діелектричною сталою або діелектричною проникністю і зазвичай позначають ε {\displaystyle \varepsilon } . Кулонівська сила в системі СІ має вигляд

F 12 = 1 4 π ε ε 0 q 1 q 2 r 12 3 r 12 {\displaystyle \mathbf {F} _{12}={\frac {1}{4\pi \varepsilon \varepsilon _{0}}}{\frac {q_{1}q_{2}}{r_{12}^{3}}}\mathbf {r} _{12}} .

Діелектрична стала повітря дуже близька до одиниці, тому в повітрі можна використовувати з достатньою точністю формулу для вакууму.

Історія відкриття

Здогадки про те, що взаємодія між електризованими тілами підкоряється тому ж закону оберененої пропорційності квадрату відстані, що й тяжіння, неодноразово висловлювалися дослідниками в середині 18 ст. На початку 1770-их її експериментально відкрив Генрі Кавендіш, однак своїх результатів не опублікував, і про них стало відомо тільки в кінці 19 ст. після вивчення й публікації його архівів. Шарль Кулон опублікував закон 1785 року в двох мемуарах, представлених на розгляд Французької академії наук. 1835 року Карл Гаус опублікував виведену на основі закону Кулона, теорему Гауса. У вигляді теореми Гауса закон Кулона входить до основних рівнянь електродинаміки.

Перевірка закону

Для макроскопічних відстаней при експериментах в земних умовах, що були проведені за методом Кавендіша, доведено що показник степеня r в законі Кулона не може відрізнятися від 2 більш ніж на 6·10−16. Із експериментів з розсіяння альфа-частинок виходить, що закон Кулона не порушується до відстаней 10−14 м. Але з іншого боку, для опису взаємодії заряджених частинок на таких відстанях поняття, за допомогою яких формулюється закон (поняття сили, положення), втрачають сенс. У цій області просторових масштабів діють закони квантової механіки.

Закон Кулона можна вважати одним з наслідків квантової електродинаміки, в рамках якої взаємодія заряджених часток зумовлена обміном віртуальними фотонами. Внаслідок цього, експерименти з перевірки висновків квантової електродинаміки можна вважати дослідами з перевірки закону Кулона. Так, експерименти з анігіляції електронів та позитронів свідчать, що відхилення від законів квантової електродинаміки не спостерігаються до відстаней 10−18 м.

Див. також

  • Теорема Гауса
  • Сила Лоренца

Джерела

  • Гончаренко С. У. Фізика: Основні закони і формули.. - К. : Либідь, 1996. - 47 с.
  • Кучерук І. М., Горбачук І. Т., Луцик П. П. Електрика і магнетизм // Загальний курс фізики. - К. : Техніка, 2006. - Т. 2. - 456 с.
  • Фріш С. Е., Тіморєва А. В. Електричні і електромагнітні явища // Курс загальної фізики. - К. : Радянська школа, 1953. - Т. 2. - 496 с.
  • Физическая энциклопедия / Под ред. А. М. Прохорова. - М. : Советская энциклопедия, 1990. - Т. 2. - 703 с.
  • Сивухин Д. В. Электричество // Общий курс физики. - М. : Физматлит, 2009. - Т. 3. - 656 с.

Примітки

  1. а б Закон Кулона можна наближено застосовувати й для рухомих зарядів, якщо їхні швидкості набагато менші від швидкості світла
  2. а б У -- Coulomb (1785a) "Premier mémoire sur l’électricité et le magnétisme," , pages 569-577 -- Кулон вивчав сили відштовхування однойменних зарядів:

    Page 574 : Il résulte donc de ces trois essais, que l"action répulsive que les deux balles électrifées de la même nature d"électricité exercent l"une sur l"autre, suit la raison inverse du carré des distances.

    Переклад : Тож, з цих трьох дослідів слідує, що сила відштовхування між двома електризованими кулями, зарядженми електрикою одної природи, слідує закону оберненої пропорційності до квадрату відстані..

    У -- Coulomb (1785b) "Second mémoire sur l’électricité et le magnétisme," Histoire de l’Académie Royale des Sciences , pages 578-611. -- Кулон показав, що тіла із протилежними зарядами притягаються із силою оберенено-пропорційною відстані.

  3. Вибір такої відносно складної формули зумовлений тим, що в Міжнародній системі базовою одиницею обрано не електричний заряд, а одиницю сили електричного струму ампер, а основні рівняння електродинаміки записані без множника 4 π {\displaystyle 4\pi } .

Закон Кулона

Ирина рудерфер

Закон Кулона - это закон о взаимодействии точечных электрических зарядов.

Был открыт Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона:

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме направлена вдоль прямой, соединяющей заряды, прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.
Важно отметить, что для того, чтобы закон был верен, необходимы:
1.точечность зарядов - то есть расстояние между заряженными телами много больше их размеров.
2.их неподвижность. Иначе уже надо учитывать дополнительные эффекты: возникающее магнитное поле движущегося заряда и соответствующую ему дополнительную силу Лоренца, действующую на другой движущийся заряд.
3.взаимодействие в вакууме.
Однако, с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.

В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:

Где F1,2- сила, с которой заряд 1 действует на заряд 2; q1,q2 - величина зарядов; - радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами - r12); k - коэффициент пропорциональности. Таким образом, закон указывает, что одноименные заряды отталкиваются (а разноименные – притягиваются) .

Против шерсти не гладить!

Зная о существовании электричества на протяжении тысяч лет, человек приступил к его научному изучению лишь в XVIII веке. (Интересно, что сами ученые той эпохи, занявшиеся этой проблемой, выделяли электричество в отдельную от физики науку, а себя именовали «электриками».) Одним из ведущих первоисследователей электричества явился Шарль Огюстен де Кулон. Тщательно исследовав силы взаимодействия между телами, несущими на себе различные электростатические заряды, он и сформулировал закон, носящий теперь его имя. В основном свои эксперименты он проводил следующим образом: различные электростатические заряды передавались двум маленьким шарикам, подвешенным на тончайших нитях, после чего подвесы с шариками сближались. При достаточном сближении шарики начинали притягиваться друг к другу (при противоположной полярности электрических зарядов) или отталкиваться (в случае однополярных зарядов) . В результате нити отклонялись от вертикали на достаточно большой угол, при котором силы электростатического притяжения или отталкивания уравновешивались силами земного притяжения. Замерив угол отклонения и зная массу шариков и длину подвесов, Кулон рассчитал силы электростатического взаимодействия на различном удалении шариков друг от друга и на основе этих данных вывел эмпирическую формулу:

Где Q и q -величины электростатических зарядов, D - расстояние между ними, а k - экспериментально определяемая постоянная Кулона.

Сразу отметим два интересных момента в законе Кулона. Во-первых, по своей математической форме он повторяет закон всемирного тяготения Ньютона, если заменить в последнем массы на заряды, а постоянную Ньютона, на постоянную Кулона. И для этого сходства есть все причины. Согласно современной квантовой теории поля и электрические, и гравитационные поля возникают, когда физические тела обмениваются между собой лишенными массы покоя элементарными частицами-энергоносителями - фотонами или гравитонами соответственно. Таким образом, несмотря на кажущееся различие в природе гравитации и электричества, у двух этих сил много общего.

Второе важное замечание касается постоянной Кулона. Когда шотландский физик-теоретик Джеймс Кларк Максвелл вывел систему уравнений Максвелла для общего описания электромагнитных полей, выяснилось, что постоянная Кулона напрямую связана со скоростью света с. Наконец, Альберт Эйнштейн показал, что с играет роль фундаментальной мировой константы в рамках теории относительности. Таким образом можно проследить, как самые абстрактные и универсальные теории современной науки поэтапно развивались, впитывая в себя ранее полученные результаты, начиная с простых выводов, сделанных на основе настольных физических опытов.
http://elementy.ru/trefil/coulomb_law
http://www.fieldphysics.ru/coulombs_law/
http://www.vnz.ru/spravki/zakon-Kulona.html

Страница 56

ЗАКОН КУЛОНА(уч.10кл.стр.354-362)

Основной закон электростатики. Понятие точечного заряженного тела.

Измерение силы взаимодействия зарядов с помощью крутильных весов. Опыты Кулона

Определение точечного заряда

Закон Кулона. Формулировка и формула

Сила Кулона

Определение единицы заряда

Коэффициент в законе Кулона

Сравнение электростатических и гравитационных сил в атоме

Равновесие статических зарядов и его физический смысл (на примере трех зарядов)

Основной закон электростатики – закон взаимодействия двух неподвижных точечных заряженных тел.

Установлен Шарлем Огюстеном Кулоном в 1785 году и носит его имя.

В природе точечных заряженных тел не существует, но если расстояние между телами во много раз больше их размеров, то ни форма, ни размеры заряженных тел существенно не влияют на взаимодействия между ними. В током случае эти тела можно рассматривать, как точечные.

Сила взаимодействия заряженных тел зависит от свойств среды между ними. Опыт показывает, что воздух очень мало влияет на силу этого взаимодействия и она оказывается почти такой же как в вакууме.

Опыт Кулона

Первые результаты по измерению силы взаимодействия зарядов получены в 1785 г. французским ученым Шарлем Огюстеном Кулоном

Для измерения силы использовались крутильные весы.

Маленькая тонкая незаряженная золотая сфера на одном конце изолирующего коромысла, подвешенного на упругой серебряной нити, уравновешивалась на другом концу коромысла бумажным диском.

Поворотом коромысла она приводилась в контакт с такой же неподвижной заряженной сферой, в результате чего ее заряд делился поровну между сферами.

Диаметр сфер выбирался много меньше расстояния между ними, чтобы исключить влияние размеров и формы заряженных тел на результаты измерений.

Точечный заряд – заряженное тело, размер которого много меньше расстояния его возможного действия на другие тела.

Сферы, имеющие одноименные заряды, начинали отталкиваться, закручивая нить. Угол поворота был пропорционален силе, действующей на подвижную сферу.

Расстояние между сферами измерялось по специальной градуировочной шкале.

Разряжая сферу 1 после измерения силы и соединяя ее вновь с неподвижной сферой, Кулон уменьшал заряд на взаимодействующих сферах в 2,4,8 и т.д. раз,

Закон Кулона:

Сила взаимодействия между двумя неподвижными точечными зарядами, находящимися в вакууме, прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними, и направлена по прямой, соединяющей заряды.

k – коэффициент пропорциональности, зависящий от выбора системы единиц.

Силу F12 называю силой Кулона

Сила Кулона центральная, т.е. направлена по линии соединяющей центры зарядов.

В СИ единица заряда является не основной, а производной, и определяется с помощью Ампера – основной единицы СИ.

Кулон – электрический заряд, проходящий через поперечное сечение проводника при силе тока в 1 А за 1 с

В СИ коэффициент пропорциональности в законе Кулона для вакуума:

k = 9*109 Нм2/Кл2

Часто коэффициент записывают в виде:

e0 = 8,85*10-12 Кл2/(Нм2) – электрическая постоянная

Закон Кулона записывается в форме:

Если точечный заряд поместить в среду с относительной диэлектрической проницаемостью e, отличную от вакуума, кулоновская сила уменьшится в e раз.

У любой среды кроме вакуума e > 1

Согласно закону Кулона два точечных заряда по 1 Кл, на расстоянии 1 м в вакууме, взаимодействуют с силой

Из этой оценки видно, что заряд в 1 Кулон – очень большая величина.

На практике пользуются дольными единицами – мкКл (10-6), мКл (10-3)

1 Кл содержит 6*1018 зарядов электронов.

На примере сил взаимодействия электрона и протона в ядре можно показать, что электростатическая сила взаимодействия частиц больше гравитационной примерно на 39 порядков. Однако электростатические силы взаимодействия макроскопических тел (в целом электронейтральных) определяются лишь очень малыми избыточными зарядами, находящимися на них, и поэтому не велики по сравнению с гравитационными, зависящими от массы тел.

Возможно ли равновесие статических зарядов?

Рассмотрим систему из двух положительных точечных зарядов q1 и q2.

Найдем, в какую точку следует поместить третий заряд, чтобы он находился в равновесии, а так же определим величину и знак этого заряда.

Статическое равновесие возникает тогда, когда геометрическая (векторная) сумма сил, действующих на тело, равна нулю.

Точка, в которой силы, действующие на третий заряд q3, могут компенсировать друг друга, находится на прямой между зарядами.

При этом заряд q3 может быть как положительным так и отрицательным. В первом случае компенсируются силы отталкивания, во втором – силы притяжения.

Учитывая закон Кулона статическое равновесие зарядов будет в случае:

Равновесие заряда q3 не зависит ни от его величины, ни от знака заряда.

При изменении заряда q3 в равной мере меняются как силы притяжения (q3 положительный), так и силы отталкивания (q3 отрицательный)

Решив квадратное уравнение относительно x можно показать, что заряд любого знака и величины будет находится в равновесии в точке на расстоянии x1 от заряда q1:

Выясним устойчивым или неустойчивым будет положение третьего заряда.

(При устойчивом равновесии тело, выведенное из положения равновесия, возвращается к нему, при неустойчивом – удаляется от него)

При горизонтальном смещении силы отталкивания F31, F32 меняются из-за изменения расстояний между зарядами, возвращая заряд к положению равновесия.

При горизонтальном смещении равновесие заряда q3 устойчивое.

При вертикальном смещении, равнодействующая F31, F32 выталкивает q3

Перейти на страницу: