Коммуникация в среде животных. Коммуникация между животными различных видов. Обонятельные и тактильные сигналы

Коммуникация у животных

В настоящее время выделяются три основных подхода к изучению коммуникации животных в зоопсихологии.

Попытки прямой расшифровки сигналов. Можно просто наблюдать за животными в разнообразных ситуациях их жизни в сообществах и, опираясь на достоверные корреляции между предшествующими и последующими событиями, делать выводы об используемых животными системах передачи информации (корреляционный метод). Были получены данные о сигналах, используемых рядом видов птиц в брачном поведении, информирующих о найденных источниках корма у медоносной пчелы, информирующих о разных опасных животных у зеленых мартышек («орел», «змея», «леопард») и др. Часто метод наблюдения дополняется экспериментом. Метод макетов или моделей, использованный при изучении системы передачи информации у бабочек-бархатниц, позволил установить, какой именно набор признаков моделей бабочки самки вызывает положительную реакцию самцов (цвет – черный, размер – большой, в 4,5 раза больше натурального, форма не важна, движения – танцующие, порхающие, а не равномерные). С помощью эксперимента, включающего предъявление зеленым мартышкам записей криков их сородичей, издаваемых в различных ситуациях тревоги, но при измененных акустических характеристиках и в отсутствии реальной опасности, было установлено, что обезьяны и в этих случаях ведут себя в соответствии с семантическими значениями сигналов. Были составлены «словари» соответствующих сигналов для многих видов животных: насекомых, птиц (дятлов, кур, соек), млекопитающих (грызунов, дельфинов, лемуров, мартышек).

Попытки обучить животных применению какой-либо системы коммуникации, не присущей данному виду (обучение языкам-посредникам, искусственным языкам). Работы проводились с обезьянами (низшими – павианами и макаками, а также человекообразными, за исключением гиббонов), дельфинами, ластоногими и попугаями. В качестве систем коммуникации использовали системы жестов, пластиковых жетонов, значков (лексиграмм), нанесенных на клавиатуру компьютера, звуков, создаваемых с помощью синтезатора, слов разговорного английского языка. Животных обучали с помощью различных вариантов дрессировки, в т. ч. и путем подражания. Установлено, что представители всех перечисленных таксонов животных способны в определенных для каждого вида пределах освоить навязанную систему коммуникации и достаточно успешно пользоваться ею, в ряде случаев комбинируя усвоенные символы для обозначения новых объектов и ситуаций.

Теоретико-информационный подход. Суть этого оригинального подхода (Ж. И. Резникова) в том, что в экспериментах животные ставятся перед задачей передать определенное (заранее известное экспериментатору) количество информации, при этом измеряется время, затраченное на ее передачу, т. е. оценивается скорость передачи информации. В лабораторных экспериментах с рыжими лесными муравьями было показано, что муравьи-разведчики передают фуражирам совершенно точную информацию о том, на каком из конечных «листьев» искусственного «бинарного дерева» (особого лабиринта) находится приманка (сироп). Передается информация с помощью тактильного контакта – посредством «антеннального кода». Чем длинней была последовательность поворотов, т. е. чем больше информации надо было передать, тем больше времени муравей-разведчик тактильно, с помощью усиков, контактировал со своими 4–7 фуражирами. Получив информацию, фуражиры быстро, практически без ошибок на поворотах, достигали нужного «листа» и «дерева» (нового, не имеющего запаха муравья-разведчика). В описанных экспериментах показано, что муравьям, как и пчелам (что было впервые обнаружено К. Фришем у медоносной пчелы), свойственно т. наз. дистанционное наведение, т. е. передача информации дистанционным путем: у пчел – с помощью «танца», у муравьев – «антеннального кода».

Источники ко всем статьям Раздела 16: Лопатина Н. Г. Наумов Н. П. Биологические (сигнальные) поля и их значение в жизни млекопитающих // Успехи современной териологии. М., 1977; Резникова Ж. И. Структура сообществ и коммуникация животных. Новосибирск, 1997; Она же. Интеллект и язык. Животные и человек в зеркале эксперимента. М., 2000; Она же. Интеллект и язык животных и человека. Основы когнитивной этологии. М., 2005; Фабри К. Э. Основы зоопсихологии. М., 1976; Он же. Филогенетические предпосылки человеческих способов общения. Вестник МГУ. Сер. 14. Психология. 1977. № 2; Фридман В. С. Пространство и время социальной жизни животных: ресурс нынешнего или когнитивная матрица будущего поведения? // Мир психологии. 1999. № 4; Он же. Ритуализированные демонстрации позвоночных в процессе коммуникации: знак и стимул // Мастер-класс для «Пантоподы». М., 2007; Фриш К. Из жизни пчел. М., 1980.

Редактор-составитель Н. Н. Мешкова

Биологическое сигнальное поле животных (термин предложен Н. П. Наумовым): 1. Вносимые жизнедеятельностью животных изменения в окружающую среду и приобретающие информационное значение для представителей данного вида, а иногда и для представителей др. видов. 2. Вся доступная животным информация, как непосредственно получаемая от животного, обитающего на опр. территории, так и опосредованная – от следов жизнедеятельности животного на данной территории. Следы жизнедеятельности, имеющие информационное значение, достаточно видоспецифичны. Напр., для бурого медведя это «задиры» коры деревьев на высоте своего роста (при стоянии на задних конечностях), для песчанок – сооружение «сигнальных холмиков» или «сторожков» из грунта, пропитанного собственными выделениями, для домашней кошки – помеченные при особом маркировочном мочеиспускании «выделяющиеся» предметы – стволы деревьев, углы зданий, колеса автомобилей, для амурского тигра – «поскребы», сделанные когтями, и мочевые метки на вертикальных поверхностях тоже чем-то «выделяющихся» объектов – величиной, необычной формой ствола, наростами (деревья), отдельно расположенные крупные камни. У территориальных видов млекопитающих информационное значение приобретают также постоянные и временные убежища, соединяющая их сеть троп. Для насекомых (муравьев) информационное значение имеют также запаховые следы, оставляемые на тропах, расходящихся от муравейника в направлении кормовых участков. Пчелы, найдя обильный источник корма, метят это место при помощи особой железы, оставленный запах позволяет др. пчелам, получившим информацию, переданную во время «танца» разведчицы («танцы» пчел ), легче обнаружить этот источник корма. Для Б. с. п. ж. в значении 2 к перечисленным выше источникам информации следует добавить информацию, передаваемую с помощью особых сигналов непосредственно от животного к животному (сигналы животных ).

Н. Н. Мешкова

Демонстрации у животных – двигательные паттерны, вовлеченные в коммуникацию животных, в значительной степени генетически детерминированные и характерные для каждого вида. Демонстрации – результат процесса ритуализации. Демонстрации отличаются стереотипностью, выразительностью, преувеличенным характером исполнения, фиксированностью движений. Благодаря этому они выделяются как дискретные поведенческие структуры, позволяющие партнерам распознавать их как сигналы на фоне несигнальной активности и адекватным образом реагировать. Исследования последних лет показали, что у самых разных видов животных с разл. внутригрупповой организацией стержневым событием процессов общения является обмен информацией. Ритуализованные демонстрации и представляют собой те структуры, функция к-рых в процессе коммуникации – перенос четко отграниченных порций информации от одного животного к другому и обратно (В. С. Фридман). Демонстрации, функционирующие как сигналы, участвующие в коммуникации, описанные, напр., у манящих крабов, у разных видов рыб, ящериц, птиц и млекопитающих.

Н. Н. Мешкова

Коммуникация визуальная у животных – передача и прием информации посредством зрения. Визуальный канал связи обеспечивает экстренное поступление информации со значительных расстояний и весьма эффективен в кач. средства дистантной связи. К тому же отсутствует быстрое затухание сигнала, как при акустической коммуникации: пока животные находятся в пределах видимости друг друга, они являются постоянными взаимными источниками визуальной информации. В зрительной коммуникации используются сигналы двух типов: дистантные, действующие на значительных расстояниях, и ближние, действующие на коротких расстояниях. Пример первых – неспецифические сигналы, возникающие как следствие самого присутствия особей в поле зрения друг друга: стервятники, грифы и др. хищные птицы-падальщики отслеживают друг друга, летая на значительной высоте и на большом удалении друг от друга во время поиска пищи. Резкое снижение высоты одной из птиц служит для остальных сигналом о возможном обнаружении падали или раненого животного. Пример вторых – визуальные контакты между животными при ухаживании и заботе о потомстве: сигнальные позы и телодвижения в семейных парах цихлидовых рыб. Визуальная коммуникация обслуживает разл. сферы жизнедеятельности животных: территориальное, половое, родительско-детское поведение, др. сферы внутривидового взаимодействия, такие как агонистические, дружеские контакты, кооперативное поведение, возникновение и поддержание «традиций» – эффективных способов действия факультативного характера.

Визуальные сигналы нередко дополняются акустическими и тактильными, образуя сложные коммуникативные комплексы. Напр., у шимпанзе наблюдается коммуникативный комплекс, включающий особое мимическое выражение – «игровое лицо», жест, тактильное воздействие и голосовую реакцию, в ситуации взаимодействия подростков при приглашении к совместной игре.

Н. Н. Мешкова

Манипулирование демонстрационное – особый путь (тип) передачи информации, описанный автором у обезьян (павианов гамадрилов, макак резусов): одно животное, как правило высокоранговое, подчеркнуто, «нарочито» показывает объект манипулирования др. членам сообщества и демонстративно, провокационно манипулирует им на виду у внимательно наблюдающих за его действиями членов группы. Помимо демонстрационного показа объекта и производимых с ним действий, такая обезьяна может поддразнивать «зрителей» тем, что придвигает объект к одному из них, но немедленно одергивает его назад и с шумом «нападает», как только др. обезьяна протягивает к нему руку. Агрессивные проявления со стороны демонстрирующей обезьяны подавляются «зрителями» путем особых, примирительных движений и поз. Такое демонстрационное манипулирование наблюдается преим. у взрослых обезьян, но не у детенышей. Такое поведение обнаруживает, по мнению К. Э. Фабри, все признаки демонстрации, но при этом имеет существенную и важную познавательную функцию. Наблюдающие обезьяны имеют возможность дистантно получить такие сведения о свойствах объекта манипулирования, к-рые обычно выявляются лишь при непосредственном обращении с объектами. Они в состоянии проследить за структурными изменениями объекта, не вступая с ним в непосредственный контакт, т. к. все деструктивные и прочие манипуляции «актер» выполняет у них на виду, как бы «один за всех». Результатом демонстрационного манипулирования могут быть подражательные действия «зрителей». Это зависит от того, насколько действия «демонстратора» стимулировали остальных обезьян. Но всегда объект манипулирования выступает как некий посредник в общении между «актером» и «зрителями». Последние получают информацию и о самой манипулирующей особи, в действиях к-рой содержатся элементы «импонирования».

Демонстрационное манипулирование имеет прямое отношение к формированию «традиций» у обезьян, к настоящему времени подробно описанному у многих видов как низших, так и человекообразных обезьян. Этот путь передачи информации об объектах рассматривается К. Э. Фабри в кач. одной из важнейших предпосылок человеческих способов общения, поскольку именно здесь создаются наилучшие условия для совместной коммуникативно-познавательной деятельности.

Н. Н. Мешкова

Поведение ритуализованное у животных – видотипичные поведенческие паттерны, к-рые в процессе ритуализации модифицировались и стали исполнять коммуникативные функции. Эти паттерны обычно стереотипны по форме и являются незавершенными по своему исполнению. Ритуализованное поведение часто имеет определенную, типичную для вида интенсивность. Напр., черный дятел барабанит по дереву при выдалбливании дупла для гнезда. Он же барабанит по сухим ветвям для обозначения занятости территории. В последнем случае звук имеет характерный ритм и является стереотипным по сравнению со звуком при выдалбливании дупла. Ритуализованное поведение характеризуется также изменениями в мотивации. Примером является ритуализованное кормление в процессе ухаживания у многих видов птиц. Самки часто выпрашивают корм у самцов, ухаживающих за ними, с помощью поведения, к-рое в др. случаях наблюдается только при выпрашивании корма молодняком. В ситуации выпрашивания самки не являются особенно голодными, их поведение явно ритуализовано и имеет др. мотивацию, чем при обычном выпрашивании пищи.

Н. Н. Мешкова

Релизеры, или ключевые раздражители (от англ. to release – освобождать, отпускать, сбрасывать), – признаки компонентов среды, в т. ч. признаки, носителями к-рых являются сами животные, а также демонстрации, выполняемые ими, к-рые являются сигналами-стимулами, запускающими ответные реакции. Склонность животных подавать такие сигналы и отвечать на них опр. действиями – врожденная. Ответная реакция при действии ключевого раздражителя неизбежна, если животное находится в соответствующем мотивационном состоянии и рецептивно в отношении данного стимула. Однако показано для многих видов птиц и млекопитающих, живущих сообществами, что члены сообщества реагируют на релизеры своего вида, только когда он исходят от опр. особей, известных данному животному лично. В данном случае это результат установления индивидуальных связей в процессе научения. Как релизеры могут функционировать звуки (крики лягушек и жаб), запахи (пахучие чешуйки у самца бабочки), прикосновения (мягкие касания партнера у виноградной улитки, энергичное толкание самки самцом колюшки), разнообразные зрительные стимулы (красное пятно на клюве взрослой серебристой чайки), движения (при демонстрациях, связанных с угрозой и ухаживанием у серебристой чайки).

Н. Н. Мешкова

Ритуализация у животных – эволюционный процесс, путем к-рого нек-рые виды активности животных – элементы смещенной и переадресованной активности, экспрессивные движения, движения намерения, предоставляющие опр. информацию др. животному, – превращаются в стереотипные структуры поведения и приобретают сигнальную функцию. Напр., при помощи ритуализации смещенной чистки клювом перьев сложилась ритуализированная чистка, к-рая наблюдается во время ухаживания у многих видов уток. Она более стереотипная, чем нормальная чистка клювом перьев, и направлена на особенно бросающиеся в глаза заметные перья. В результате ритуализации элементы перечисленных выше активностей становятся демонстрациями.

Н. Н. Мешкова

Сигнализация у животных – осуществление коммуникативного взаимодействия между особями в сообществе с помощью сигнальных средств, посредством к-рых партнер или партнеры побуждаются к специфическим видотипичным ответным реакциям. Такова, напр., обоюдная сигнализация в семейных парах цихлидовых рыб в период заботы о мальках, семейных парах серебристых чаек в период насиживания и выкармливания птенцов. Эффект воздействия на партнера зависит от уровня мотивации демонстратора и, соответственно, интенсивности подаваемого сигнала. В кач. сигналов такого рода выступают выразительные движения и позы, а также их сочетания – демонстрации. По механизму своего действия на партнера последнее относится к ключевым раздражителям или релизерам.

Н. Н. Мешкова

Сигналы животных – средства, с помощью к-рых при взаимодействиях оказывают влияние друг на друга путем передачи информации. Сигналы представляют собой структуры поведения, состоящие из опр. поведенческих элементов – выразительных движений, поз, экспрессивных действий, звуков или их комплексов, а также морфоструктур, к-рые животные демонстрируют при помощи соответствующих движений. Сигналы подразделяют по способу осуществления сигнальной функции на сигналы-стимулы и сигналы в собственном смысле слова (символы или знаки). Сигналы-стимулы побуждают животное к ответному действию здесь и сейчас. К этой категории сигналов относятся ключевые раздражители, или релизеры. Животное-инициатор выполняет опр. видотипичную демонстрацию и в ответ др. животное осуществляет опр. также видотипичную реакцию, но только в том случае, если это животное находится в соответствующем мотивационном состоянии и рецептивно в отношении данного стимула. Напр., широко раскрывая ярко окрашенный рот, птенец (у многих видов воробьиных птиц) побуждает родителей складывать принесенную пищу ему в рот. Подобный тип влияния на партнера относят к категории манипуляции. С помощью стимулов животное манипулирует поведением партнера.

Сигналы в собственном смысле слова (символы или знаки) предают информацию, а не оказывают воздействие здесь и теперь (как стимулы). Животное, к-рому адресована эта информация, может воспользоваться ею сразу, а может и существенно позже, как только соответствующая ситуация возникнет вновь, т. е. в этом случае у животного имеется свобода выбора. Напр., в экспериментах, выполненных на цыплятах (Evans), было показано, что специфическую реакцию затаивания и бегства вызывает как особый «крик опасность с воздуха», так и стилизованное изображение «ястреба», если его двигать над цыплятами. Но стратегия каждым цыпленком принимается самостоятельно, исходя из собственного положения относительно опасности и собственных обстоятельств. Та же самая особенность, а именно отсутствие однозначной реакции на сигналы о появлении опасных объектов, была продемонстрирована на зеленых мартышках, мартышках-дианах, лемурах катта, пустынных мангустах сурикатах. При изучении функционирования такого рода сигналов в сообществах животных было также установлено, что эти сигналы достаточно независимы от контекста и соотносятся именно с опр. категориями значимых для вида событий в его среде обитания. Так, лемуры катта издают «крик опасность с воздуха» на любое появление пернатых хищников независимо от того, где находится сам лемур, или от того, насколько быстро меняется скорость приближения хищника к самому животному (Pereira, Macedonia). А зеленые мартышки издавали «крик орла», когда птица была достаточно далеко, и на последних стадиях атаки, когда кричащие обезьяны почти не имеют шансов спастись (Cheney, Seyfarth). Недавно было описано – у больших белоносых мартышек – комбинирование сигналов. У этого вида есть два базовых крика, относящихся к потенциально опасным объектам: «крик леопард с земли» и «крик орел с воздуха». Объединение обоих криков дает сигнал с новым значением «крайней, экстремальной опасности», в ответ на к-рый обезьяны всей группы сразу же снимаются с места и перемещаются быстро на дальнее расстояние (Arnold, Zuberbtihler).

Сигналы, подобные описанным, получили название «referential signals», т. е. относящихся к опр. категории значимых объектов во внеш. мире животного (Evans). Ж. И. Резникова использует дословный перевод «категориальный сигнал». В. С. Фридман считает более подходящим по смыслу перевод этого термина как «сигнал-символ» или «сигнал-знак». В отличие от сигналов первого типа – стимулов, к-рые функционируют между двумя (тремя) особями, сблизившимися для взаимодействия, – сигналы такого типа – символы или знаки – функционируют на уровне всего сообщества. Поэтому сообщения, поданные такими сигналами, сохраняют значимость и коммуникативную ценность вне «пространства и времени» той конкретной ситуации, когда был подан сигнал, тогда как сигналы-стимулы – теряют. Функционируя в сообществе животных как целостной системе, сигналы-знаки или «имена» опр. категорий существенных событий в окружающем животное мире, позволяют установить опр. соответствие сигналов и событий, т. е. передавать опр. порции информации от одной особи к другой и обратно, если они регулярно и активно участвуют как в восприятии, так и в генерировании таких сигналов-знаков.

В сообществах животных важная для них информация может содержаться не только в описанных выше сигналах, но и в следах активности животных. В этих случаях животное получает информацию опосредованно через объекты, подвергавшиеся воздействию со стороны животного. Трансформированная животными среда обитания не только позволяет им ориентироваться в пространстве, но и служит дополнительным важным источником информации как на видовом, так и на межвидовом уровнях. Совокупная информация, передаваемая непосредственно от одного животного к другому с помощью сигналов и опосредованно при помощи следов активности в среде, получила название «биологического сигнального поля» (Н. П. Наумов). В отношении, по крайней мере, обезьян можно говорить еще об одном – третьем пути или типе передачи информации – о комплексной передаче информации, при к-рой сочетаются оба предыдущих типа: действия животного и их результаты. Комплексная передача информации происходит тогда, когда обезьяны наблюдают за манипуляциями с объектами, преим. деструктивными, осуществляемыми демонстративно у них на виду др. обезьяной (К. Э. Фабри). Такое манипулирование получило название «демонстрационного манипулирования».

Arnold K., Zuberbtihler K. Semantic combinations in primate calls // Nature. 2006. 441. 18 May; Pereira M. E., Macedonia J. M. Ringtailed lemur antipredator calls denote predator class, not response urgency. Animal Behaviour 41. 1991; Cheney D., Seyfarth R. How monkeys see the world: Inside the mind of another species. Chicago; Evans C. Referential signal // Perspectives in ethology. 1997. V. 12.

Н. Н. Мешкова

Тактильная информация – обмен информацией между животными на основе физич. контактов. В силу своей природы тактильная коммуникация возможна только на близком расстоянии. Она широко распространена в животном мире, особенно выражена у видов с исключительно «общественным» образом жизни. Среди насекомых это, напр., муравьи, у к-рых описана передача информации о найденном корме при помощи «антеннального кода», пчелы, у к-рых описана передача информации о месте массового цветения растений с помощью «языка танцев», включающую тактильную составляющую. Тактильная коммуникация имеет важное значение и для позвоночных. Так, напр., самка колюшки, прежде чем отложить икру в гнездо, сделанное самцом из растений, нуждается в серии толчков, к-рые он проделывает, тычась своим рыльцем в основание ее хвоста. У шимпанзе физич. контакты с др. особями – осн. компонент коммуникативных воздействий, направленных на то, чтобы подбодрить или успокоить др. животное. Тактильные контакты используются, в частности, как приветствие после разлуки, в знак примирения после агрессивной стычки (Гудолл). Выражается тактильная коммуникация в касаниях друг друга рукой, похлопываниях, объятиях, поцелуях. Один из самых важных видов тактильных контактов у обезьян – груминг, или обыскивание шерсти. Животные, находящиеся в тесных дружеских отношениях, напр., мать и ее выросший отпрыск, двое взрослых самцов или самок, когда встречаются после разлуки, обычно, поприветствовав друг друга, садятся и подолгу занимаются взаимным обыскиванием. Последние также эффективно уменьшает напряженность между двумя взрослыми самцами, если между ними существуют натянутые отношения. Нередко наблюдаются и агрессивные тактильные контакты, такие как шлепок, удар, затрещина, укус. Исследователи подчеркивают, что такого рода воздействия эффективно работают на поддержание порядка в сообществе шимпанзе.

Гудолл Дж. Шимпанзе в природе: поведение. М., 1992.

Н. Н. Мешкова

Танцы пчел – сложная система коммуникации, позволяющая пчелам-разведчицам с помощью информации абстрактного характера путем т. наз. дистанционного наведения сообщать рабочим пчелам о найденных ими местах обильного цветения растений (Frisch), а также пчелам-«квартирмейстерам» (это всегда самые старые пчелы в улье) сообщать др. пчелам во время роения о найденном ими подходящем месте для жилья (Lindauer; Lewis, Schneider). «Танец» осуществляется внутри улья, в полной темноте (с целью наблюдения в экспериментах используются однорамочные стеклянные ульи), на вертикальной поверхности сотов. К. Фриш описал три разновидности «танца», информирующие об удаленности источника корма. 1) «Танец-толчок»: пчела беспорядочно бежит по сотам, время от времени виляя брюшком (в том случае, если она обнаружила корм на расстоянии два – пять метров от улья); 2) «круговой танец», состоящий из пробежек по кругу попеременно по часовой стрелке и против нее (если корм обнаружен на расстоянии до 100 м); 3) «виляющий танец» – пробежки по прямой, сопровождающиеся вилянием брюшка с возвращением пчелы к исходной точке то слева, то справа (если корм найден на большом расстоянии от улья). Как показал К. Фриш, расстояние до источника корма коррелирует с 11 параметрами «танца», напр., с его продолжительностью, темпом, количеством виляний брюшком, длительностью звуковых сигналов. Во время «виляющего танца» пчела передает также информацию о направлении, в к-ром нужно лететь: угол между линией пробежки и вертикалью соответствует углу между линией полета пчелы от улья к источнику корма и направлением на солнце. При этом если следует лететь навстречу солнцу, пчела «танцует» снизу вверх, если же от солнца, то сверху вниз. Дополнительную информацию, а именно запаховую, пчелы получают, обнюхивая разведчицу, волосистое тело к-рой обсыпано пыльцой цветков. Кроме того, «танцующая» пчела время от времени останавливается и делится с пчелами, двигающимися за нею в фигурах «танца», нектаром с обнаруженных ею цветков. Позднее было показано (Лопатина), что молодые пчелы-фуражиры не в состоянии полностью воспринять информацию, содержащуюся в «танце», и вынуждены доучиваться.

Скептики долго не признавали реальность описанных К. Фришем «танцев» пчел. Были выполнены с целью проверки многочисл. исследования. Само описание явления «танца» пчел дополнилось новыми подробностями. Важное открытие, безоговорочно подтвердившее правоту К. Фриша, было сделано в исследовании, авторы к-рого использовали в кач. пчелы-разведчицы электронную пчелу-робота, управляемую с помощью компьютерной программы. Модель, сделанная из латуни и покрытая тонким слоем воска, выполняет «виляющий танец», совершая при этом вибрационные и колебательные движения и издавая звуки, генерируемые синтезатором. Через каждые три минуты компьютер вносит поправку в «танец» пчелы-робота с учета изменившегося положения солнца. Через каждые десять циклов «танца» она выделяет каплю ароматизированного сиропа, поедаемого следующими за нею пчелами. Установлено, что 80 % пчел, следовавших за «танцующей» пчелой-роботом, прилетали в то место, к-рое было указано (Мichelsen et al.). Явление, обнаруженное К. Фришем у медоносной пчелы – способность к дистанционному наведению, – позднее было описано у дельфинов (Evans, Bastian), шимпанзе (Мenzel), муравьев (Ж. И. Резникова).

Лопатина Н. Г. Сигнальная деятельность в семье медоносной пчелы (Apis melifera). Л., 1971; Frisch К. ?ber die Spriche der Bienen. Zool. Jahrb. Von. 1923, V. 40; Lindauer M. Communication among Social Bees. Cambridge, Massachusetts: Harvard Univ. Press, 1961; Michelsen A. The dance language of honeybees: recent findings and problems // Peter Marler Book, 1998.

H. H. Мешкова

Язык животных – 1. Сигналы и механизмы коммуникации видов животных, образующих сообщества. 2. Специализированная знаковая система, в к-рой система дифференцированных знаков соответствует дифференцированным категориям объектов внеш. мира. Язык животных в значении 1 – традиционное, разделяемое многими специалистами – этологами, зоопсихологами понимание этого термина. В кач. сигналов, образующих «язык», могут выступать визуальные, акустические, химические, тактильные, электрические средства коммуникации и способы их передачи (коммуникация визуальная, акустическая, химическая). «Язык» животных в значении 2 – понимание этого термина в более строгом смысле слова – только как коммуникация при помощи системы сигналов-символов или знаков. Что у животных действительно можно обнаружить такого рода коммуникацию, показывают исследования последнего десятилетия, выполненные на разных видах позвоночных, прежде всего птицах и млекопитающих (Фридман; Cheney, Seyfarth; Evans; и др.). В основе исследований систем сигнализации высших животных – объединение обычного сравнительно-этологического подхода к анализу поведения с семиотическим подходом и отделение старой, эволюционно более ранней системы сигналов-стимулов от эволюционно более молодой системы сигналов-символов (знаков). Из книги Как относиться к себе и к людям [Другая редакция] автора Козлов Николай Иванович

Невербальная коммуникация Каждый раз, когда я общаюсь с другими людьми, я выражаю словами только часть своего сообщения. Очень многое выражается тоном голоса и другими невербальными посланиями. Когда я функционирую и реагирую свободно, все эти сообщения, объединяясь,

Из книги Научите себя думать! автора Бьюзен Тони

Секс-коммуникация (психологический практикум)Чтобы в сексуальной жизни между вами не было недоразумений, вы можете воспользоваться предлагаемым небольшим вопросником американских авторов. Если вы по своему опыту уже знаете, что разговор на эту тему для вас чреват

Из книги Психология автора Робинсон Дейв

7. Коммуникация Использование информации, ради чего она преднамеренно или случайно вводится. Включает в себя очень важный подкомпонент? мышление.В данное определение включены многие из проблем, перечисленных выше. Не включены только те из них, которые в каком-то смысле

Из книги Социальные коммуникации автора Адамьянц Тамара Завеновна

Из книги Диагностика способности к общению автора Батаршев Анатолий

Из книги Энкоды: Как договориться с кем угодно и о чем угодно автора Ходорыч Алексей

Вербальная коммуникация В качестве знаковой системы в вербальной коммуникации выступает человеческая речь, т. е. естественный звуковой язык.Система фонетических знаков языка строится на основе лексики и синтаксиса. Лексика – это совокупность слов, входящих в состав

Из книги Фитнес для ума автора Лисс Макс

Невербальная коммуникация Невербальную коммуникацию по признаку средств предъявления информации можно разделить на кинестетику, пара– и экстралингвистику, проксемику и «контакт глаз» (визуальное общение).Кинестетика – это один из видов невербальной коммуникации,

Из книги Обратная сторона власти. Прощание с Карнеги, или Революционное руководство для марионетки автора Штайнер Клод

Из книги Психология рекламы автора Лебедев-Любимов Александр Николаевич

Из книги Введение в психологическую теорию аутизма автора Аппе Франческа

Коммуникация Власть коммуникации определяется способностью продуцировать собственные мысли и чувства в других людях. Она включает в себя две операции: передачу и прием, говорение и слушание. Для передачи знания, для разрешения проблем с другими людьми, для построения

Из книги автора

Внутримагазинная коммуникация Манера разговора и тон, выбранный вами для общения с собственной доченькой, определяют, какими воспоминаниями о продуктовом шопинге она впоследствии будет делиться со своим психологом – ужасными или прекрасными. Ниже приведены наиболее

1. Коммуникация: определение, основные элементы

Существуют различные определения понятия «коммуникация» (лат. communico – делаю общим, связываю, общаюсь). В обыденной жизни данный термин употребляется как синоним общения .

Под коммуникацией в человеческом обществе подразумевают «общение» (почти синоним во всех языках, кроме русского), обмен мыслями, знаниями, чувствами, схемами поведения.

В современном понимании коммуникация – это социально обусловленный процесс передачи и восприятия информации в условиях межличностного и массового общения по разным каналам при помощи различных коммуникативных средств.

Механистический и деятельностный подходы (парадигмы)

Механистический – под коммуникацией понимается однонаправленный процесс кодирования и приема информации получателем сообщения. В деятельностном подходе коммуникация понимается как совместная деятельность участников коммуникации, в ходе которой вырабатывается общий (до определенного предела) взгляд на вещи и действия с ними.

Коммуникация происходит не только в человеческих социальных системах. Определенного рода коммуникация характерна и для животных (брачные танцы птиц, токование глухаря, язык пчел и др.), и для механизмов, т.е. созданных человеком предметов (трубопроводы, канализация, транспорт, телеграфные и телефонные сигналы, взаимосвязь компьютеров в интернете и т.п.; при этом сюда не следует включать человеческую коммуникацию с помощью механизмов).

В технической сфере слово коммуникация весьма часто употребляется во множественном числе: коммуникации (трубы можно подсчитать). Человеческая же коммуникация – понятие неисчисляемое, поэтому употребление множественного числа в этой области не совсем уместно. Правильнее говорить о средствах и видах коммуникации, способах и участниках ее, т.е. использовать счетные слова (как, например, килограмм сахару, чашка чаю, вид и способ деятельности, разновидности коммуникации и т.п.). Использование множественного числа: коммуникации и их разновидности, аналогично просторечно-разговорному два чая, три кофе, две информации и связано, по-видимому, с тем, что сфера общественных наук в последнее время пополнилась не очень грамотными специалистами по трубам и коммуникациям. Интересно, что подобная проблема возникла и в английском языке. Там конкурируют две формы: неисчисляемая communication и исчисляемая communications, – и два мнения, о том, какую из них следует употреблять по отношению к human communication.

Коммуникация у животных и насекомых

Коммуникация у животных всегда вызывала повышенный интерес исследователей. Системы коммуникации в животном мире более первичны и примитивны по сравнению с человеческими и определяются как ‘биологически целесообразное совместное поведение, направленное на адаптацию к среде и регулируемое, в частности, сигнализацией’ (И.Н.Горелов).

Основной проблемой, которую пытаются разрешить специалисты является соотношение nature и nurture, т.е. природного, врожденного и приобретенного, воспитанного. Инстинктивные механизмы, как считается, развиваются в трех направлениях:

· сохранение вида (сексуальное поведение, забота о потомстве и т.п.),

· сохранение индивида (удовлетворение голода и жажды, поиск пропитания, заготовка запасов и т.п.) и

· обеспечение более или менее постоянной безопасности (защита от плохих погодных условий, врагов, разъединения с собратьями и т.п.).

Именно в последнем случае механизмы поведения имеют промежуточную направленность: они обеспечивают коммуникацию между индивидом и видом. Здесь идет речь о приспособлении поведения индивида к формам поведения других представителей вида. Познавательные процессы здесь направлены на различение друзей и врагов, программы поведения – на совместное бегство или нападение, предупреждение или преследование. В согласованном, координированном поведении для обеспечения защиты и безопасности и следует искать корни коммуникации. Квазисоциальное поведение животных распространяется и на первые две области инстинктивного поведения (размножение и поиск пищи).

Одним из примеров коммуникации является пение птиц. Птицы научаются пению в процессе ‘воспитания’. У каждой птицы своя манера исполнения песни, общей для всего вида. Более того, индивидуальные особенности в некоторых географических областях приводят даже к обособлению ‘региональных диалектов’.

Еще более интересен способ распространения информации об опасности. Есть два вида опасности: хищники и разорители гнезд. Если птица видит хищника, то она издает специфический звук, похожий на свисток, обозначающий необходимость скрыться. Если же появляется разоритель гнезд, то птица издает прерывистый звук стаккато, который служит призывом к бою, собирающим соседних птиц для того, чтобы отогнать нападающего от гнезд. Различие хищников выучивается птицами в процессе развития и передается следующему поколению, может использоваться в процессе дрессировки (можно научить пугаться даже молочной бутылки).

Помимо звуков, животные используют и другие каналы коммуникации. Запах и обоняние, столь важные и для пчел, и для муравьев, и для низших обезьян, в меньшей степени важны для высших приматов. У последних бесшумная коммуникация преимущественно является зрительной (жесты) и тактильной (прикосновения). В походе идущий впереди самец поднимает лапу (руку?) – сигнал остановки для стада (группы?), шимпанзе с высоким социальным статусом (начальник, ‘пахан’) может жестом разрешить своим подчиненным поедание пищи, мать-шимпанзе прикосновением к плечу детеныша (ребенка) не разрешает ему, например, куда-то бежать, расчесывание шерсти у собрата является знаком подчинения и отсутствия агрессивных намерений, демонстрация анальной области также является жестом подчинения или соподчинения, борьба между соперниками сопровождается соответствующими жестами и мимикой. Интересно, что уверенный в себе лидер редко прибегает к символической угрозе, и редко требует от подчиненных ‘показать зад’. Неуверенный же лидер слишком часто требует жестов подчинения, в результате эти жесты становятся стереотипными, из них ‘выветривается’ исходная семантика, и такой лидер теряет свои позиции.

Пример демонстрации доминирующего положения: обезьяны барабанят по земле и собственной грудной клетке, вздыбливают шерсть, издавая агрессивные звуки, размахиваютспециально отломанными ветвями, скручивают в бараний рог молодые деревца, вырывают корни деревьев, бросаются песком или землей. Ветка, специально отломленная для демонстрации своей силы, а не для каких-либо физиологических потребностей – это знак, средство коммуникации. Стремление к социальному доминированию имеет настолько сильную мотивационную основу, что даже пищевая и сексуальная потребности могут отступать на второй план.

Таким образом, первые средства коммуникации возникают из инстинктивного поведения, которые могут варьироваться под воздействием условий и коррекции поведения в процессе взаимного обучения. Это поведение фиксируется в памяти, и освобождаясь от влияния наследственных факторов, приобретает новое значение и относительно самостоятельное существование (наскок – имитация наскока – намек на имитацию; случайно показанные зубы во время зевка могут быть приняты за знак угрозы; поднятие руки, чтобы взобраться на дерево и остановка для этого – поднятие руки как сигнал остановки; демонстрация анальной области самкой павиана как призыв к копуляции – сигнал миролюбия у самца по отношению к победителю). Память животного хранит не только модели поведения, но и реакцию среды, то есть собратьев. В дальнейшем малоэффективные моменты поведенческого акта сокращаются, а существенные для изменения поведения других коммуникантов акцентируются. Поведенческий акт становится коммуникативным актом. Биорелевантное становится семиотическим (Ю.С.Степанов). Коммуникация, таким образом, это обособившаяся часть совместной деятельности, направленная на регуляцию самой этой деятельности (мета-деятельность).

ФУНКЦИИ КОММУНИКАЦИИ

Основные функции коммуникации :

ü информативная – передача истинных или ложных сведений;

ü интерактивная (побудительная ) - организация взаимодействия между людьми, например, согласование действий, распределение функций, влияние на настроение, убеждения, поведение собеседника путем использования различных форм воздействия: внушение, приказ, просьба, убеждение;

ü перцептивная - восприятие друг друга партнерами по общению и установление на этой основе взаимопонимания;

ü экспрессивная - возбуждение или изменение характера эмоциональных переживаний.

Коммуникационный процесс – это обмен информацией между двумя или более людьми. Основная цель коммуникационного процесса – обеспечение понимания информации, являющейся предметом обмена, т.е. сообщение.

Принято выделять следующие элементы коммуникации:

Коммуникатор-источник (отправитель, адресант) посылает сообщение, под влиянием стимула выбирая код и канал. Коммуникатор-источник играет определяющую роль в процессе коммуникации. Он является инициатором процесса коммуникации, устанавливает ее цели, определяет получателя (адресата). От обоснованности действий коммуникатора-источника зависит эффективность коммуникации. Для осуществления эффективной коммуникации необходимо четко определить ее цели, правильно выделить целевую аудиторию и уяснить желаемую ответную реакцию.

Код – это правила, по которым сочетаются знаки, выражающие содержание сообщения;

Каналы – это естественные, презентационные носители сообщения, например, голос, лицо и т.д., и искусственные, репрезентационные: книги, картины, радио, телефон. Каждый канал обладает определенной пропускной способностью, т.е. объемом информации, которую можно по нему передать за определенное время;

Коммуникатор-реципиент (получатель, адресат) должен декодировать сообщение, т.е. он должен знать правила, по которым сформировано полученное им сообщение.

Обратная связь – это реакция на сообщение, получаемая источником от реципиента. Реакция говорить о понятности или непонятности, согласии и несогласии и др. и может вызвать дополнительное сообщение.

Шумы – это внутренние и внешние помехи у коммуникаторов, возникающие в процессе передачи и восприятии сообщений. В качестве помех выступают:

ü шумы в окружающей среде (например, разговор в аудитории);

ü физические повреждения (глухота, слепость и т.д.);

ü семантические проблемы (непонятные слов, многозначность слов, выражений, разное понимание знаков и т.д.);

ü организационный беспорядок (перескакивание с темы на тему, хождение по кругу);

ü социальный шум (несоответствие социальным нормам, например, то, о чем не принято говорить или может вызвать конфликт);

ü психологические проблемы (стресс, раздражение).

Виды коммуникации

По составу коммуникантов выделяют интраперсональную, межличностную, групповую и массовую коммуникацию .

Интраперсональная коммуникация приравнивается к разговору с самим собой, человек ведет разговор с самим собой, осуществляет внутренний «монолог».

Межличностная коммуникация связана с идеальной моделью коммуникации и во многом первична, в ней участвуют двое коммуникантов (но есть варианты наблюдателя, включенного наблюдателя, коммуникации на фоне присутствующих свидетелей и т.п.);

Групповая коммуникация осуществляется внутри группы, между группами, индивид-группа (например, интервью политического лидера или разговор руководителя со служащими); есть различия не столько количественные, сколько качественные: разные цели – в коммуникации в малых и больших группах (напр., чаты и форумы в интернете).

Массовая коммуникация происходит в случае, если сообщение получает или использует большое количество людей, зачастую состоящее из различных по своим интересам и коммуникативному опыту групп (ТВ, радио, Интернет отличаются по степени охвата).

По способу установления и поддержания контакта коммуникации подразделяются на непосредственные (прямые) и опосредованные (дистанционные) .

Для нормальной жизни каждой особи необходима точная информация обо всем, что ее окружает. Получение этой информации происходит посредством систем и средств коммуникации. Животные принимают коммуникативные сигналы и другую информацию о внешнем мире с помощью физических и химических чувств.

У большинства таксономических групп животных присутствуют и одновременно функционируют все органы чувств, в зависимости от их анатомического строения и образа жизни различаются функциональные роли систем. Сенсорные системы хорошо дополняют друг друга и обеспечивают полную информацию живого организма о факторах внешней среды. В то же время, в случае полного или частичного выхода из строя одной или даже нескольких из них, оставшиеся системы усиливают и расширяют свои функции, чем компенсируют недостаток информации. Так, например, ослепшие и оглохшие животные оказываются способны ориентироваться в окружающей среде с помощью обоняния и осязания. Хорошо известно, что глухонемые люди легко научаются понимать речь собеседника по движению его губ, а слепые - читать при помощи пальцев.

В зависимости от степени развития у животных тех или иных органов чувств, при общении могут использоваться разные способы коммуникаций. Так, во взаимодействиях многих беспозвоночных, а также некоторых позвоночных, у которых отсутствуют глаза, доминирует тактильная коммуникация. У многих беспозвоночных имеются специализированные тактильные органы, например антенны насекомых, часто снабженные хеморецепторами. Благодаря этому их осязание тесно связано с химической чувствительностью. Из-за физических свойств водной среды, ее обитатели общаются между собой главным образом с помощью зрительных и звуковых сигналов. Достаточно разнообразны коммуникативные системы насекомых, особенно их химическая коммуникация. Самое большое значение они имеют для общественных насекомых, социальная организация которых может соперничать с организацией человеческого общества.

Рыбы используют по крайней мере три типа коммуникативных сигналов: звуковые, зрительные и химические, часто их комбинируя.

Хотя земноводные и пресмыкающиеся имеют все характерные для позвоночных органы чувств, формы их коммуникации сравнительно просты.

Коммуникации птиц достигают высокого уровня развития, за исключением хемокоммуникации, имеющейся буквально у единичных видов. Общаясь с особями своего, а также других видов, в том числе с млекопитающими и даже с человеком, птицы используют главным образом звуковые, а также зрительные сигналы. Благодаря хорошему развитию слухового и голосового аппарата, птицы имеют прекрасный слух и способны издавать множество разных звуков. Стайные птицы используют более разнообразные звуковые и зрительные сигналы, чем птицы одиночные. У них существуют сигналы, собирающие стаю, извещающие об опасности, сигналы "все спокойно" и даже призывы к трапезе. В общении наземных млекопитающих довольно много места занимает информация об эмоциональных состояниях - страхе, гневе, удовольствии, голоде и боли.

Однако этим далеко не исчерпывается содержание коммуникаций - даже у животных, не относящихся к приматам.

Кочующие группами животные посредством зрительных сигналов поддерживают цельность группы и предупреждают друг друга об опасности; медведи, в пределах своего участка, обдирают кору на стволах деревьев или трутся о них, информируя таким образом о размерах своего тела и половой принадлежности; скунсы и ряд других животных выделяют пахучие вещества для защиты или в качестве половых аттрактантов; самцы оленей устраивают ритуальные турниры для привлечения самок в период гона; волки выражают свое отношение агрессивным рычанием или дружелюбным помахиванием хвоста; тюлени на лежбищах общаются с помощью криков и особых движений; рассерженный медведь угрожающе кашляет.

Коммуникативные сигналы млекопитающих были выработаны для общения между особями одного вида, но нередко эти сигналы воспринимаются и особями других видов, оказавшимися неподалеку. В Африке один и тот же источник иногда используется для водопоя одновременно разными животными, например, гну, зеброй и водяным козлом. Если зебра с ее острым слухом и обонянием чует приближение льва или другого хищника, ее действия информируют об этом соседей по водопою, и они соответственно реагируют. В этом случае имеет место межвидовая коммуникация.

Человек использует для общения голос в неизмеримо большей степени, чем любой другой примат. Для большей экспрессивности слова сопровождаются жестами и мимикой. Остальные приматы используют в общении сигнальные позы и движения гораздо чаще, чем мы, а голос - гораздо реже. Эти компоненты коммуникативного поведения приматов не являются врожденными - животные обучаются различным способам общения по мере взросления.

Воспитание детенышей в дикой природе основано на подражании и выработке стереотипов; за ними ухаживают большую часть времени и наказывают, когда необходимо; они узнают о том, что съедобно, наблюдая за матерями, и учатся жестам и голосовому общению в основном методом проб и ошибок. Усвоение коммуникативных стереотипов поведения - процесс постепенный. Наиболее интересные особенности коммуникативного поведения приматов легче понять, если учесть обстоятельства, в которых используются разные типы сигналов - химические, тактильные, звуковые и зрительные.
6.3.1. ТАКТИЛЬНАЯ ЧУВСТВИТЕЛЬНОСТЬ. ОСЯЗАНИЕ
На поверхности тела животных находится огромное количество рецепторов, являющихся окончаниями чувствительных нервных волокон. По характеру чувствительности рецепторы разделяют на болевые, температурные (тепловые и холодовые) и осязательные (механорецепторы).

Осязание - это способность животных к восприятию внешних воздействий осуществляемая рецепторами кожи и опорно-двигательного аппарата.

Осязательное ощущение может быть разнообразным, так как возникает в результате комплексного восприятия различных свойств раздражителя, действующего на кожу и подкожные ткани. Посредством осязания определяется форма, величина, температура, консистенция раздражителя, положение и перемещение тела в пространстве и т.д. В основе осязания лежит раздражение специализированных рецепторов и преобразование в центральной нервной системе поступающих сигналов в соответствующий вид чувствительности (тактильную, температурную, болевую).

Но основными рецепторами, воспринимающими эти раздражения и отчасти положение тела в пространстве, у млекопитающих служат волосы, особенно вибриссы. Вибриссы реагируют не только на прикосновения к окружающим предметам, но и на колебания воздуха. У норников, имеющих широкую поверхность соприкосновения со стенками норы, вибриссы, кроме головы, разбросаны по всему туловищу. У лазающих форм, например, у белок, лемуров, они расположены также на брюшной поверхности и на частях конечностей, контактирующих с субстратом при передвижении по деревьям.

Тактильное чувство обусловлено раздражением механорецепторов (тельца Пачини и Мейснера, диски Меркеля и др.), расположенных в коже на некотором расстоянии друг от друга. Животные способны довольно точно определять место локализации раздражений: ползание насекомых по коже или их укусы вызывают резкую двигательную и оборонительную реакцию. Самая высокая концентрация рецепторов у большинства животных отмечается в области головы, соответственно участки кожи головы, слизистые оболочки ротовой полости губ, век и языка имеют наиболее высокую чувствительность к прикосновениям. В первые дни жизни детеныша млекопитающего главным осязательным органом является полость рта. Прикосновение к губам вызывает у него сосательные движения.

Непрерывное воздействие на механо- и терморецепторы приводит к понижению их чувствительности, т.е. они быстро адаптируются к этим факторам. Кожная чувствительность тесно связана и с внутренними органами (желудком, кишечником, почками и др.). Так достаточно нанести раздражение на кожу в области желудка, чтобы получить повышенную кислотность желудочного сока.

При раздражении болевых рецепторов возникшее возбуждение передается по чувствительным нервам в кору головного мозга. При этом поступающие импульсы идентифицируются как возникающая боль. Чувство боли имеет большое значение: боль сигнализирует о нарушениях в организме. Порог возбуждения болевых рецепторов видоспецифичен. Так, у собак он несколько ниже, чем, например, у человека. Раздражение болевых рецепторов вызывает рефлекторные изменения: усиленное выделение адреналина, повышение кровяного давления и другие явления. При действии некоторых веществ, например новокаина, болевые рецепторы выключаются. Этим пользуются для проведения местной анестезии при операциях.

Раздражение температурных рецепторов кожи является причиной возникновения ощущения тепла и холода. Можно выделить два вида терморецепторов: холодовые и тепловые. Температурные рецепторы распределены в различных участках кожи неравномерно. В ответ на раздражение температурных рецепторов, рефлекторно сужаются или расширяются просветы кровеносных сосудов, как следствие этого изменяется теплоотдача, соответственно меняется и поведение животных.


Тактильная коммуникация у разных таксономических групп
Несмотря на то, что осязание несколько ограничено в своих возможностях передачи информации по сравнению с другими органами чувств, во многих отношениях это главный из каналов коммуникации почти для всех видов живой материи, отвечающих на физический контакт.

Беспозвоночные . Тактильная коммуникация оказывается доминирующей в общественных взаимодействиях многих беспозвоночных; например, у слепых рабочих в некоторых колониях термитов, которые никогда не покидают своих подземных туннелей, или у дождевых червей, которые ночью выползают из нор для спаривания. Тактильные сигналы оказываются главными у ряда водных кишечнополостных: медуз, актиний, гидр. Большое значение тактильная коммуникация имеет для колониальных кишечнополостных. Так при прикосновении к отдельному участку колонии гидроидных полипов, животные сразу же сжимаются в крохотные комочки. Тут же вслед за этим, сжимаются и все остальные особи колонии. Тактильная коммуникация в силу своей природы возможна только на очень близком расстоянии. Длинные антенны тараканов и раков действуют как "разведчики", которые позволяют им исследовать мир в радиусе одной длины тела, но это - почти предел для осязания. У беспозвоночных осязание тесно связано с химической чувствительностью, потому что специализированные тактильные органы, например антенны или пальпы насекомых, часто снабжены также хеморецепторами. Общественные насекомые путем комбинации тактильных и химических сигналов передают членам своих семей-колоний большое количество разнообразной информации. В колонии общественных насекомых отдельные особи постоянно вступают в прямой телесный контакт друг с другом. Постоянное облизывание и обнюхивание друг друга у муравьев свидетельствует о важности прикосновений как одного из средств, организующих этих насекомых в колонию. В колониях некоторых видов ос, где самки объединены в систему иерархии, признаком подчинения при встрече служит отрыгивание пищи, которую доминирующая оса тут же поедает.

Высшие позвоночные . Тактильная коммуникация сохраняет свое значение у многих позвоночных, в частности у птиц и млекопитающих, наиболее общественные виды которых проводят значительную часть времени в физическом контакте друг с другом. У них важное место во взаимоотношениях занимает так называемый груминг, или уход за перьевым или шерстным покровом. Он заключается во взаимной чистке, вылизывании или просто перебирании перьев или шерсти. Груминг, осуществляемый самкой в процессе выращивания потомства , и взаимный груминг детенышей в помете играет важную роль для их физического и эмоционального развития. Телесный контакт между отдельными особями у общественных видов служит необходимым звеном в регулировании взаимоотношений между членами сообщества. Так, одним из наиболее действенных способов, к которому обычно прибегают небольшие певчие птички - амадины, чтобы умиротворить агрессивно настроенного соседа, служит "демонстрация приглашения к чистке пера". При возможной агрессии одной из птиц, направленной на другую, объект нападения высоко задирает голову и при этом топорщит оперение горла или затылка. Реакция агрессора оказывается совершенно неожиданной. Вместо того чтобы напасть на соседа, он начинает покорно перебирать клювом распущенное оперение его горла или затылка. Подобная же демонстрация имеет место у некоторых грызунов. При встрече двух животных, занимающих разные ступени иерархической лестницы, подчиненное животное позволяет доминанту вылизывать свои мех. Разрешая высокоранговой особи дотрагиваться до себя, низкоранговая тем самым проявляет свою покорность и переводит потенциальную агрессивность доминанта в другое русло.

Дружественные телесные контакты широко распространены среди высокоорганизованных животных. Прикосновения и другие тактильные сигналы широко используются при общении обезьянами. Лангуры, павианы, гиббоны и шимпанзе часто дружески обнимают друг друга, а павиан может слегка дотронуться, толкнуть, ущипнуть, куснуть, обнюхать или даже поцеловать другого павиана в знак искренней симпатии. Когда два шимпанзе встречаются впервые, они могут осторожно дотронуться до головы, плеча или бедра незнакомца.

Обезьяны постоянно перебирают шерсть - чистят друг друга, что служит проявлением подлинной близости, интимности. Особенно важным оказывается груминг в тех группах приматов, где поддерживается социальное доминирование, например у макаков-резусов, павианов и горилл. В таких группах подчиненная особь часто сообщает, громко чмокая губами, что она хочет почистить другую, занимающую более высокое положение в социальной иерархии. У обезьян груминг является типичным примером социосексуальных контактов. Хотя такого рода взаимоотношения нередко объединяют животных одного пола, тем не менее подобные контакты чаще наблюдаются между самками и самцами, причем первые играют активную роль, вылизывая и вычесывая самцов, тогда как вторые ограничиваются тем, что подставляют партнерше те или иные участки своего тела. Такое поведение не связано прямо с сексуальными взаимоотношениями, хотя изредка груминг приводит и к совокуплению.
6.3.2. ХЕМОКОММУНИКАЦИЯ
Восприятие вкуса. Ощущение вкуса имеет большое значение для животных. По вкусу они определяют съедобность или несъедобность апробируемого продукта. Совершенно особый вкус имеют вещества, используемые в качестве лекарств или минеральных подкормок. Большое значение для животных имеет вкус пищи, очень многие из них имеют совершенно особые вкусовые предпочтения. Владельцы разнообразных домашних животных хорошо знают, сколь разборчивы в еде оказываются порой их любимцы.

Вкусовое ощущение возникает в результате воздействия растворов химических веществ на хеморецепторы вкусовых образований языка и слизистой оболочки ротовой полости; при этом возникают ощущения горького, кислого, сладкого, соленого или смешанного вкуса. Вкусовое чувство у новорожденных детенышей пробуждается раньше всех других ощущений.

На основе избирательной и высокочувствительной реакции сенсорных клеток возникают чувство вкуса и запаха.

Ольфакторная коммуникация , обоняние. Обоняние - восприятие животными посредством соответствующих органов определённого свойства (запаха) химических соединений в окружающей среде. От вкусовой рецепции обоняние отличается тем, что пахучие вещества, воспринимаемые с его помощью, обычно присутствуют в более низких концентрациях. Они служат лишь сигналами, указывающими на определённые предметы или события во внешней среде. Наземные животные воспринимают пахучие вещества в виде паров, доставляемых к органу обоняния с током воздуха или путём диффузии, а водные - в виде растворов. Для очень многих животных: насекомых, рыб, хищников, грызунов, - обоняние оказывается важнее зрения и слуха, поскольку дает им больше информации об окружающей среде. Чувствительность к запахам порой бывает просто фантастической: например, самцы некоторых бабочек реагируют на несколько молекул полового феромона самки в кубическом метре воздуха. Степень развития обоняния может достаточно сильно различаться даже в пределах одной таксономической группы животных. Так, млекопитающих делят на макросматиков, у которых обоняние развито хорошо (к ним относится большинство видов), микросматиков - с относительно слабым развитием обоняния (тюлени, усатые киты, приматы) и аносматиков, у которых типичные органы обоняния отсутствуют (зубатые киты). Обоняние служит животным для поиска и выбора пищи, выслеживания добычи, спасения от врага, для биоориентации и биокоммуникации (мечение территории, отыскание и узнавание полового партнёра и т.д.). Рыбы, земноводные, млекопитающие хорошо различают запахи особей своего и других видов, а общие групповые запахи позволяют животным отличать "своих" от "чужаков".

Число пахучих веществ огромно, причём запах каждого из них уникален: нет двух различных химических соединений с абсолютно одинаковым запахом. По действию запахов на организм собаки их можно разделить на привлекающие и возбуждающие, отталкивающие и безразличные. Привлекающие и возбуждающие запахи имеют положительное физиологическое значение для организма животного. К таким запахам относятся: запах пищи, запах выделений самки в период размножения, запах хозяина для собаки и др.

Отталкивающие запахи не имеют положительного физиологического значения и вызывают в организме реакции, направленные к тому, чтобы освободиться от их действия. Примером таких запахов могут быть резкие запахи парфюмерии, табака, краски. Для некоторых животных таким запахом будет являться запах хищника.

Острота обоняния (абсолютный порог) измеряется минимальной концентрацией пахучих веществ, вызывающей обонятельную реакцию. Чувствительность обоняния к одному и тому же запаху у животного может меняться в зависимости от его физиологического состояния. Она снижается при общем утомлении, насморке, а также при утомлении самого обонятельного анализатора, при слишком длительном действии достаточно сильного запаха на обонятельные клетки животного.

Для определения направления источника запаха имеет значение влажность носа животного. Она необходима для определения направления ветра, а следовательно, и направления, откуда принесен запах. Без ветра животные обнаруживают запахи лишь на очень близких расстояниях. Боковые вырезы на носу у млекопитающих предназначены для восприятия запахов, приносимых боковым и задним ветрами.

Феромоны. Особую группу пахучих веществ составляют феромоны, которые выделяются животным обычно с помощью специальных желез в окружающую среду и регулируют поведение представителей того же вида. Феромоны - биологические маркеры собственного вида, летучие хемосигналы, управляющие нейроэндокринными поведенческими реакциями, процессами развития, а также многими процессами, связанными с социальным поведением и размножением. Если у позвоночных обонятельные сигналы действуют, как правило, в сочетании с другими - зрительными, слуховыми, тактильными сигналами, то у насекомых феромон может играть роль единственного "ключевого стимула", полностью определяющего их поведение.

Общение с помощью феромонов обычно рассматривают как сложную систему, включающую в себя механизмы биосинтеза феромона, его выделения в окружающую среду, распространения в ней, восприятия его другими особями и анализа полученных сигналов .

Интересны способы обеспечения видовой специфичности феромонов. В состав феромона всегда входят несколько химических веществ. Обычно это органические соединения с низким молекулярным весом - от 100 до 300. Видовые различия их смесей достигаются одним из трех способов: 1) одинаковый набор веществ с разным их соотношением у каждого вида; 2) одно или несколько общих веществ, но разные дополнительные вещества у каждого вида; 3) совершенно разные вещества у каждого вида.

Наиболее известны следующие феромоны:


  • эпагоны, "феромоны любви" или половые аттрактанты;

  • одмихнионы, "путеводные нити", указывающие дорогу к дому или к найденной добыче, они же и метки на границах индивидуальной территории;

  • торибоны, феромоны страха и тревоги;

  • гонофионы, феромоны, меняющие половые свойства;

  • гамофионы, феромоны полового созревания;

  • этофионы, феромоны поведения;

  • лихневмоны, феромоны вкуса.
Индивидуальный запах. Запах представляет собой своеобразную "визитную карточку" животного. Он сугубо индивидуален. Но в то же время запах видоспецифичен, по нему животные четко отличают представителей своего вида от любого другого. Члены одной группы или стаи при наличии индивидуальных различий имеют и общий специфический групповой запах.

Индивидуальный запах животного формируется из целого ряда составляющих: его половой принадлежности, возраста, функционального состояния, стадии полового цикла и т.д. Эта информация может кодироваться рядом пахучих веществ, входящих в состав мочи, их соотношением и концентрацией. Индивидуальный запах может меняться под воздействием различных причин в течение всей жизни животного. Огромную роль в создании индивидуального запаха играет микробный пейзаж. Микроорганизмы, обитающие в полостях кожных желез, принимают активное участие в синтезе феромонов. Источниками запаха служат продукты неполного анаэробного окисления секретов, выделяемых животным в различных полостях тела и железах. Перенос бактерий от особи к особе может осуществляться в процессе взаимодействия членов группы: спаривании, кормлении молодняка, родах и т.д. Таким образом, внутри каждой популяции поддерживается определенная общегрупповая микрофлора, обеспечивающая сходный запах.


Роль обоняния в некоторых формах поведения
Обоняние имеет исключительно большое значение в жизни животных многих таксономических групп. С помощью обоняния животные могут ориентироваться относительно некоторых физиологических состояний, которые присущи в данный момент другим членам группы. Например, испуг, волнение, степень насыщения, болезни сопровождаются у животных и человека изменением обычного запаха тела.

Особенно большое значение ольфакторная коммуникация имеет для процессов, связанных с размножением. У многих как позвоночных, так и беспозвоночных животных обнаружены специфические половые феромоны. Так, некоторые насекомые, рыбы, хвостатые амфибии имеют феромоны, стимулирующие развитие женских половых желез и вторичных половых признаков у самок. Феромоны самцов некоторых рыб ускоряют созревание самок, синхронизируя размножение популяции.

Термиты и близкие к ним муравьи наделены функциональной системой торможения развития самок и самцов. Пока рабочие муравьи слизывают нужные дозы гонофионов с брюшка яйцекладущей самки, новых самок в гнезде не будет. Ее гонофионы подавляют развитие яичников у рабочих муравьев. Но как только яйцекладущая самка погибает, сейчас же начинают плодоносить некоторые рабочие муравьи. В 1954 г. Батлер открыл, что челюстные железы матки пчел выделяют особое маточное вещество, которое она размазывает по телу, позволяя затем рабочим муравьям слизывать его. Главная его роль в том, чтобы подавлять развитие яичников у рабочих пчел. Но как только матка исчезает, а с ней и этот феромон, у многих рядовых членов семьи сразу же начинают развиваться яичники. Затем эти пчелы откладывают яйца, хоть они и не оплодотворены. То же происходит, когда маточного феромона не хватает на всех членов пчелиной семьи. Биологическая активность этого феромона столь высока, что рабочей пчеле достаточно лишь коснуться хоботком тела живой или мертвой матки, как наступает торможение развития яичников.

Огромное значение для полового поведения имеют феромоны, выделяемые самками для привлечения самцов. В период течки у самок млекопитающих усиливается секреция многих кожных желез, особенно окружающих аногенитальную зону, в составе секрета которых в это время появляются половые гормоны и феромоны. В еще большем количестве во время течки эти вещества содержатся и в моче самок. Они способствуют созданию запахов, привлекающих внимание самцов.

Целый ряд феромонов - гонофионов, описанных у беспозвоночных, способствуют перемене пола животного в течение его жизни. Морской многощетинковый червь офриотрох в начале своей жизни всегда самец, а когда он подрастает, то превращается в самку. Взрослые самки этих червей выделяют в воду гонофион, заставляющий самок превращаться в самцов. Нечто подобное происходит и у некоторых брюхоногих моллюсков. Они тоже в молодости самцы, а затем становятся самками.

Самцы многих насекомых на разных частях своего тела несут железы, секрет которых дает самкам стимул к размножению. Взрослые самцы пустынной саранчи, выделяя особые феромоны, ускоряют созревание молодых саранчуков.

У млекопитающих описаны гамофионы, воспринимаемые в основном обонянием . Они играют немалую роль в размножении. Лучше всех в этом отношении изучены мыши. Моча агрессивных самцов содержит феромон агрессии, в состав которого входят метаболиты мужских половых гормонов. Этот феромон может способствовать возникновению агрессии у доминирующих самцов и реакции подчинения у низкоранговых. Помимо агрессии, запах мочи самцов домовых мышей вызывает у особей того же вида много других поведенческих и физиологических реакций. Так, например, запах незнакомого самца подавляет исследование новой территории другими самцами, привлекает самок, блокирует беременность, вызывает синхронизацию и ускорение эструсовых циклов, ускоряет половое созревание молодых самок и подавляет нормальное развитие сперматогенеза у молодых самцов.

Поскольку половые гормоны и феромоны всех млекопитающих в принципе одинаковы, то подобные явления наблюдаются и у животных других видов.

Обоняние является одним из самых ранних чувств, "включающихся" в онтогенезе. Детеныши уже в первые дни после рождения запоминают запах матери. К этому времени у них уже вполне развиваются нервные структуры, обеспечивающие восприятие запаха. Запах детенышей играет важную роль для развития нормального материнского поведения суки. В период лактации самки продуцируют особый, материнский феромон, который придает специфический запах детенышам и обеспечивает нормальные взаимоотношения между ними и матерью.

Специфический запах появляется и тогда, когда животное испытывает страх. При эмоциональном возбуждении резко увеличивается секреция потовых желез. Иногда у животных при этом происходит непроизвольный выброс секрета пахучих желез, мочеиспускание и даже калоизвержение. Большое информационное значение имеют пахучие метки, которыми животные маркируют свои владения.

Мечение территории . Огромную роль играет обоняние в территориальном поведении животных. Практически все животные маркируют свои участки с помощью специфического запаха. Мечение - чрезвычайно важная форма поведения для многих видов наземных животных: оставляя пахучие вещества в разных точках своего участка обитания, они сигнализируют о себе другим особям. Благодаря пахучим меткам происходит более равномерное, а главное, структурированное распределение особей в популяции, противники, избегая прямых контактов, которые могли бы привести к увечьям, получают достаточно полную информацию о "хозяине", а половые партнеры легче находят друг друга.

Кожные железы млекопитающих. Вся кожа млекопитающих густо пронизана многочисленными железами. По строению и характеру выделяемых секретов кожные железы разделяют на два типа - потовые и сальные. Секреты всех кожных желез представляют собой продукты выделения железистых клеток составляющих их стенки.

Потовые железы, выделяющие жидкий секрет - пот, - играют в организме роль дополнительных органов выделения. Кроме того, потоотделение способствует охлаждению кожи и играет важную роль в терморегуляции. Интенсивность потоотделения зависит в сильной степени от температуры окружающей среды, но может возникать и под воздействием других факторов, в том числе и эмоциональных. Регулируется потоотделение эндокринной системой и нервными центрами, расположенными в головном и спинном мозге. Сальные железы имеют несколько другой тип секреции, чем потовые. Но тем не менее функционируют они, как правило, вместе, имея общие наружные выводные протоки.

Кроме обычных кожных желез, у некоторых млекопитающих встречаются и специфические пахучие железы, носящие название мускусных. Их выделения имеют множественные функции: облегчает встречу особей разного пола, используется для мечения занятой территории, служит средством защиты от врагов. Таковы мускусные железы кабарги, овцебыка, землероек, выхухоли, ондатры; каудальные, промежностные и анальные железы некоторых хищных; копытные и зароговые железы коз, серн и некоторых других парнокопытных; предглазничные железы оленей и антилоп и т.д. Исключительно защитное значение имеют пахучие железы некоторых куньих. Так, например, у скунса эти выделения настолько едки, что вызывет у человека, подвергшегося их действию, тошноту, а иногда и обморочное состояние. К тому же запах выделений скунса отличается чрезвычайной стойкостью и сохраняется во внешней среде в течение длительного времени.

Маркировка территории . Большинство животных так или иначе привязано к участку своего обитания. Остроту конкуренции из-за территории до некоторой степени предотвращает маркировка занятого участка обитания, выполненная его хозяином. Явление это широко распространено среди млекопитающих и осуществляется путем оставления на видных местах своих следов; меток в виде выделений пахучих желез, экскрементов, затесов или царапин на коре деревьев, камнях или сухом грунте, сохраняющих запах выделений подошвенных желез. Олени и некоторые антилопы метят занятую ими территорию обильно выделяемым пахучим секретом предглазничных желез, для чего трутся мордой о ветки и стволы деревьев. Косули, серны, снежные козы в период гона бодают кусты, оставляя на них пахучие выделения зароговой железы. Мускусный пекари прокладывает пахучую трассу, стирая на своем пути о свисающие ветки секрет спинной мускусной железы. Медведь также иногда оставляет пахучий след, поднимаясь на задние лапы у стволов деревьев и потираясь о них мордой и спиной, чаще же он сдирает кору когтями, нанося на задиры секрет подошвенных желез. Звери, живущие в норах, постоянно оставляют пахучие следы на стенах норы. В сельской местности и в городах легко проследить маркировку у домашних кошек. Проходя мимо маркируемого предмета, кошка останавливается, поворачивается к нему задом и выбрызгивает немного мочи с особенно резким запахом, производя при этом характерные движения хвостом. Маркировке подлежат все "выдающиеся" предметы: конек крыши, углы строений, столбы, кочки, стволы деревьев, колеса машин и т.д. Впоследствии подобные пункты подвергаются маркировке всеми кошками данного района. Маркировочное мочеиспускание принципиально отличается от "гигиенического", когда кошка предварительно выкапывает ямку в субстрате и затем тщательно закапывает свои производные, чтобы замаскировать запах. Все представители семейства псовых также метят территорию при помощи мочи. Самцы поднимают ногу и метят все возможные выдающиеся предметы: деревья, столбы, камни и т.д. Каждый последующий самец обязательно старается оставить свою метку выше, чем предыдущий. Суки так же метят территорию. Маркировочное поведение особенно усиливается перед течкой и во время ее. В местах массовых прогулок домашних собак образуются специфические мочевые точки. Обнюхивая на прогулке метки, оставленные другими собаками, собаки получают много ценной и интересной информации. Информационное значение имеет и кал. Испражняясь, многие животные стараются оставить его на возможно более высоких местах, иногда даже приклеивают его к стволам деревьев или камням.

Интенсивному мечению с помощью мочи подвергаются границы территории обитания стаи собак или волков. Обычно этим занимается доминирующий кобель. Как пишет Ф. Моуэт (1968), стая волков примерно раз в неделю совершает обход "фамильных земель" и освежает межевые знаки. Английский исследователь Ф. Моуэт занимался изучением поведения полярных волков Аляски и жил в палатке на территории стаи. Однажды, в то время, когда волки ушли на ночную охоту, ученый решил таким же образом "застолбить" "свою" территорию площадью около трехсот квадратных метров. Вернувшись с охоты, волк-самец сразу же заметил метки Ф. Моуэта и стал их изучать... "Встав на ноги, он еще раз принюхался к моему знаку и, очевидно, принял решение. Быстро, с уверенным видом он начал систематический обход участка, который я застолбил для себя. Подойдя к очередному "пограничному" знаку, он обнюхивал его разок-другой, затем старательно делал свою отметку на том же пучке травы или на камне, но с наружной стороны. Через какие-нибудь пятнадцать минут операция была закончена. Затем, волк вышел на тропу там, где кончались мои владения, и рысцой пустился к дому, предоставив мне пищу для самых серьезных размышлений." (Ф. Моуэт. Не кричи, волки! М., 1968, С. 75.)

Данный пример показывает, что метки особи одного вида могут быть понятны и информативны для особей другого вида.
6.3.3. ЗРИТЕЛЬНАЯ КОММУНИКАЦИЯ
Зрение играет огромную роль в жизни животных. Это один из важных сенсорных каналов, связывающих с внешним миром. В то время как звуковые сигналы могут восприниматься животными на достаточно большом расстоянии, а обонятельные оказываются вполне информативными и в отсутствие в поле зрения или слуха других особей, зрительные сигналы могут действовать лишь на относительно коротком расстоянии.

Ключевую роль в зрительной коммуникации играют позы и телодвижения, при помощи которых животные сообщают о своих намерениях. Во многих случаях такие позы дополняются звуковыми сигналами. На относительно большом расстоянии могут действовать сигналы тревоги в виде мелькающих пятен белого цвета: хвост или пятно на заду у оленей, хвосты кроликов, увидев которые, представители того же вида кидаются в бегство, даже не видя самого источника опасности.

Связь при помощи зрительных сигналов особенно характерна для позвоночных, головоногих моллюсков и насекомых, т.е. для животных с хорошо развитыми глазами. Интересно отметить, что цветовое зрение практически универсально для всех групп, за исключением большинства млекопитающих. Яркая разноцветная раскраска некоторых рыб, рептилий и птиц поразительно контрастирует с универсальной серой, черной и коричневой окраской большинства млекопитающих.

Многие членистоногие имеют хорошо развитое цветовое зрение, но тем не менее зрительная сигнализация у них не очень распространена, хотя цветовые сигналы используются в демонстрациях ухаживания, например у бабочек или манящих крабов.

У позвоночных особенно важную роль зрительная коммуникация получила для процесса общения между особями. Практически во всех их таксономических группах существует множество ритуализированных движений, поз и целых комплексов фиксированных действий, играющих роль ключевых раздражителей для реализации многих форм инстинктивного поведения.

Зрительный анализатор состоит из воспринимающего аппарата - глаза, проводящих путей - зрительного нерва и зрительного центра в коре головного мозга.

Светопреломляющие структуры глаза образуют систему специализированных образований. Прозрачная роговица имеет выпуклую форму. За радужной оболочкой расположено прозрачное двояковыпуклое тело - хрусталик. Он является главной частью глаза, преломляющей свет. Форма хрусталика меняется в процессе аккомодации глаза к видению приближенных или удаленных предметов. Когда животное смотрит вдаль, ресничная мышца расслабляется, а связки хрусталика натягиваются - это обусловливает уплощение хрусталика. В том случае, если рассматриваемый предмет находится на близком расстоянии, происходит сокращение ресничной мышцы, в результате чего хрусталиковые связки расслабляются, и хрусталик как эластическое тело принимает более выпуклую форму. Наибольшей способностью к аккомодации обладают приматы, наименьшей - виды, ведущие ночной образ жизни.
Особенности зрения представителей разных таксономических групп
У разных представителей животного мира, в зависимости от их анатомического строения и условий обитания, органы зрения устроены несколько по-разному.

Членистоногие. В коммуникации крабов, омаров и других ракообразных значительная роль принадлежит зрению. Ярко окрашенные клешни крабов-самцов привлекают самок и одновременно предупреждают самцов-соперников, что им лучше держаться на расстоянии. Некоторые виды крабов исполняют брачный танец, при этом они размахивают своими большими клешнями в ритме, характерном для данного вида. Многие глубоководные морские беспозвоночные, например морской червь Odontosyllis, имеют ритмически вспыхивающие светящиеся органы, называемые фотофорами.

Насекомые. Зрительные сигналы насекомых выполняют различные функции. Вершиной развития инстинктивных компонентов поведения общения является ритуализация поведения, заключающаяся в определенной последовательности движений, особенно четко проявляющаяся в половом поведении насекомых, в частности в " ухаживании самцов" за самками. В большой степени ритуализированными оказываются и угрожающие движения. Исключительно интересная форма зрительной коммуникации, которая может действовать на очень больших расстояниях, наблюдается у светлячков. У них средством привлечения особей другого пола служат люминесцентные вспышки холодного желто-зеленого света, производимые с определенной частотой. Кроме того, некоторые виды светляков используют световые сигналы и в других целях. Так, неоплодотворенные самки светляка Photuris versicolor испускают видоспецифические комплексы вспышек света в ответ на сигналы самцов, которые приближаются к ним для спаривания. После спаривания самка перестает светиться, и в следующие две ночи ее поведение меняется. Она принимает позу хищника с поднятыми передними ногами и открытыми челюстями. Теперь она снова начинает светиться, но уже не применяет кода, характерного для ее вида. Она испускает сигналы, характерные для родственного ей более мелкого вида из этого же рода. Когда самец сверчка данного вида приближается к ней, она убивает и съедает eго.

Танцы пчел . Пчелы, обнаружив источник пищи, возвращаются в улей и оповещают остальных пчел о его расположении и удаленности с помощью особых перемещений на поверхности улья (т.н. танец пчел). Танцы пчел представляют собой весьма совершенный способ визуальной коммуникации , подобному которому нет даже у высших позвоночных. Найдя источник пищи и вернувшись в улей, пчела раздает другим пчелам-сборщицам пробы нектара и приступает к "танцу", который состоит из пробежек по сотам. Рисунок танца зависит от местонахождения обнаруженного источника пищи: если он находится рядом с ульем (на расстоянии 2-5 метров от него), то производится "танец-толчок". Он заключается в том, что пчела беспорядочно бежит по сотам, время от времени виляя брюшком. Если корм обнаружен на расстоянии до 100 метров, то выполняется "круговой" танец, состоящий из побежек по кругу попеременно по часовой стрелке и против нее. Если же нектар обнаружен на большем расстоянии, то выполняется "виляющий " танец, состоящий из пробежек по прямой, сопровождающихся виляющими движениями брюшка с возвращением к исходной точке то справа, то слева. Интенсивность виляющих движений указывает на расстояние находки: чем ближе находится кормовой объект, тем интенсивнее выполняется танец. Кроме расстояния, с помощью танца пчелы указывают и направление к корму. Так, во второй форме танца угол между линией побежки и вертикалью на вертикально расположенных сотах соответствует углу между линией полета пчелы от улья к кормовому объекту и положением солнца. Танцующая на сотах пчела тут же привлекает к себе внимание других сборщиц, которые сразу же по окончания танца отправляются в полет за взятком.

Рыбы. Рыбы обладают хорошим зрением, но плохо видят в темноте, например в глубинах океана. Большинство рыб в той или иной степени воспринимает цвет. Это важно в брачный период, поскольку яркая окраска особей одного пола, обычно самцов, привлекает особей противоположного пола. Изменения окраски служат предупреждением для других рыб, говорящим о том, что не следует вторгаться на чужую территорию. В период размножения некоторые рыбы, например трехиглая колюшка, устраивают брачные танцы; другие, например сомики-кошки, демонстрируют угрозу, поворачиваясь широко открытым ртом в сторону чужака.

Амфибии. Зрительная коммуникация играет основную роль в ориентации у наземных амфибий. По сравнению с рыбами роговица глаза у амфибий более выпуклая и защищена от высыхания веками. Неподвижные земноводные различают лишь движущиеся предметы, однако при движении они начинают различать и неподвижные.

Весной, в период размножения, самцы многих видов амфибий приобретают яркую окраску, которая в сочетании с комплексом ритуальных движений имеет важное значение для полового отбора. У некоторых многих видов лягушек и жаб ярко окрашенное горло, например темно-желтое с черными пятнами, наблюдается не только у самцов, но и у самок, причем обычно у последних цвет его ярче. Некоторые виды используют сезонную окраску горла не только для привлечения партнера, но и как зрительный сигнал, предупреждающий, что территория занята. Среди амфибий существует довольно много видов, имеющих железы с едким или ядовитым секретом. Многие из них имеют яркую предупреждающую окраску.

Рептилии. Многие пресмыкающиеся отгоняют вторгшихся на их территорию чужаков своего или других видов, демонстрируя угрожающее поведение, - они открывают рот, раздувают части тела (как очковая змея), бьют хвостом и т.п. У змей зрение сравнительно слабое, они видят движение предметов, а не их форму и окраску; более острым зрением отличаются виды, охотящиеся на открытых местах. Некоторые ящерицы, например гекконы и хамелеоны, в период ухаживания исполняют ритуальные танцы или своеобразно покачиваются при движении. Многие ящерицы, например, степные агамы в период размножения приобретают яркую окраску, усиливающуюся при агрессивных столкновениях.

Птицы. Поскольку зрительная коммуникация для птиц является ведущей, они имеют прекрасно развитые глаза. Птицы обладают исключительной зоркостью и способны хорошо различать цвета и оттенки, а также зрительные раздражения с разной длиной волны. Острота зрения некоторых хищных птиц представляет собой мировой рекорд среди прочих представителей животного мира. Поскольку у птиц хорошо развито цветовое зрение, для них имеют большое значение разнообразные цветовые сигналы. Так, птицы хорошо запоминают укусы ос и в дальнейшем избегают иметь дело с насекомыми, окрашенными в желто-черный цвет. Самцы зарянок проявляют агрессию по отношению к любому изображению птицы с красной грудкой. Самцы птицы-беседочника, обитающей в Австралии и Новой Гвинее, для того, чтобы привлечь самок, строят и украшают особые беседки. Обычно, чем тусклее окрашена птица, тем богаче и изысканней украшена ее беседка. Некоторые птицы подбирают раковины улиток, побелевшие от времени кости, а также все, что окрашено в синий цвет: цветы, перья, ягоды. Птицы, главным образом самцы, используют яркую внешность, чтобы отпугнуть самцов-соперников и привлечь к себе самок. Однако яркое оперение привлекает хищников, поэтому самки и молодые птицы имеют маскировочную окраску. Яркую окраску имеет внутренняя часть ротовой полости у птенцов, что срабатывает в качестве ключевого раздражителя для процедуры их кормления.

Самцы многих видов птиц в период размножения принимают сложные сигнальные позы, чистят перья, исполняют брачные танцы и совершают различные другие действия, сопровождаемые звуковыми сигналами. Головное и хвостовое оперение, короны и гребни, даже подобное переднику расположение грудных перьев используются самцами для демонстрации готовности к спариванию. Обязательный любовный ритуал у странствующего альбатроса - сложный брачный танец, исполняемый совместно самцом и самкой.

Брачное поведение самцов птиц иногда напоминает акробатические трюки. Так, самец одного из видов райских птиц проделывает самый настоящий кульбит: сидя на ветке на виду у самки, плотно прижимает крылья к телу, падает с ветки, совершает полный кувырок в воздухе и приземляется в исходном положении. Широко распространены в мире птиц и разнообразные ритуализированные движения, связанные с оборонительным поведением.

Особое значение приобретает зрение при дальней ориентации мигрирующих птиц. Так, хорошо изучена ориентация птиц по топографическим признакам, например по береговой линии, поляризированному освещению небосвода и астрономическим ориентирам - солнцу, звездам.

Млекопитающие . Визуальная коммуникация млекопитающих главным образом заключается в передаче информации посредством мимики, поз и движений. Они способствуют развитию ритуализированных форм поведения, важных для поддержания иерархического порядка в группе. Подобные позы и мимические движения характерны для всех видов млекопитающих, но наибольшее значение они приобретают у видов с высоким уровнем социализации. Так, у собак и волков выделено около 90 стереотипных видоспецифических последовательностей движений. Это, прежде всего, лицевая мимика. Изменение выражения "лица" достигается за счет движений ушей, носа, губ, языка, глаз. Другое важное средство выражения состояния у собаки - ее хвост. В спокойном состоянии он находится в обычном положении, характерном для породы. Угрожая, животное держит взъерошенный хвост напряженно поднятым вверх. Низкоранговые животные низко опускают хвост, поджимая его между ног. В движении хвоста важна быстрота и амплитуда. Свободное помахивание хвостом наблюдается во взаимодействиях дружелюбного характера. Во время ритуала приветствия помахивание хвостом осуществляется интенсивно. О многом говорят и напряженность всего тела, поднятие шерсти на загривке и т.д. В стабильных группах взаимодействия имеют форму демонстраций, в которых выявляется социальный ранг животного. Особенно отчетливо он проявляется при встречах. Собака высокого статуса ведет себя активно, обнюхивает партнера, высоко подняв хвост. Низкоранговая собака, наоборот, поджимает хвост, застывает, давая себя обнюхать, окончательная поза подчинения - падение на спину с подставлением доминанту самых чувствительных зон своего тела. Между этими крайними позициями существует масса переходных состояний.

Наблюдения за поведением волков в вольере показывают, что сражения между ними, которые могут вызвать гибель одного из них, бывают крайне редко. Как отмечает К. Лоренц, ключевым сигналом у них, как бы отключающим агрессивное поведение, служит поворот одного из волков к сопернику изогнутой шеей. Подставляя свою самую уязвимую часть (место, где проходит яремная вена), он как бы отдает себя на милость победителя, и тот сейчас же принимает "капитуляцию". Волки в сражении действуют как будто по заранее продуманному ритуалу. Поэтому все эти явления и получили название ритуального поведения. Им владеют не только хищники, но в большей или меньшей степени все млекопитающие. Ритуальное поведение часто формируется из самых обычных движений животного, первоначально связанных с совершенно другими потребностями. Так, например, поза спаривания часто становится позой доминирования одного животного над другим. Огромное значение визуальная коммуникация имеет для приматов. Язык мимики и жестов у них достигает большого совершенства. Основными зрительными сигналами высших обезьян являются жесты, мимика, а иногда также положение тела и цвет морды. Среди угрожающих сигналов - неожиданное вскакивание на ноги и втягивание головы в плечи, удары руками по земле, яростное сотрясание деревьев и беспорядочное разбрасывание камней. Демонстрируя яркий цвет морды, африканский мандрил укрощает подчиненных. В сходной ситуации обезьяна-носач с острова Борнео демонстрирует свой огромный нос. Пристальный взгляд у павиана или гориллы означает угрозу. У павиана он сопровождается частым морганием, движением головы вверх и вниз, прижиманием ушей и изгибом бровей. Для поддержания порядка в группе доминирующие павианы и гориллы то и дело бросают пристальные ледяные взгляды на самок, детенышей и подчиненных самцов. Когда две незнакомые гориллы неожиданно сталкиваются лицом к лицу, пристальный взгляд может оказаться вызовом. Вначале раздается рев, два могучих животных отступают, а затем резко сближаются, наклонив вперед головы. Остановившись перед самым соприкосновением, они начинают пристально смотреть друг другу в глаза, пока один из них не отступит. Настоящие схватки редки.

Такие сигналы, как гримасничанье, зевота, движение языка, прижимание ушей и чмокание губами, могут быть и дружественными, и недружественными. Так, если павиан прижимает уши, но не сопровождает это действие прямым взглядом или морганием, его жест означает подчинение.

Шимпанзе используют для общения богатую мимику. Например, плотно сжатые челюсти с обнаженными деснами означают угрозу; хмурый взгляд - запугивание; улыбка, особенно с высунутым языком, - дружелюбие; оттягивание нижней губы, пока не покажутся зубы и десны, - умиротворенную усмешку; надувая губы, мать-шимпанзе выражает свою любовь к детенышу; повторяющаяся зевота означает замешательство или затруднение. Шимпанзе часто зевают, когда заметят, что за ними кто-то наблюдает.

Некоторые приматы используют в общении хвост. Например, самец лемура ритмично движет хвостом перед спариванием, а самка лангура опускает хвост до земли, когда к ней подходит самец. У некоторых видов приматов подчиненные самцы при приближении доминирующего самца поднимают хвосты, обозначая свою принадлежность к низшему социальному рангу.
6.3.4. АКУСТИЧЕСКАЯ КОММУНИКАЦИЯ
Акустическая коммуникация по своим возможностям занимает промежуточное положение между оптической и химической. Подобно зрительным сигналам издаваемые животными звуки являются средством для передачи экстренной информации. Их действие ограничено временем текущей активности животного, передающего сообщение. Видимо, не случайно в очень многих случаях выразительные движения у животных сопровождаются соответствующими звуками. Но, в отличие от визуальных, акустические сигналы могут быть переданы на расстоянии в отсутствие зрительного, тактильного или ольфакторного контакта между партнерами. Акустические сигналы, подобно химическим, могут действовать на большом расстоянии или в полной темноте. Но одновременно они являются антиподом химических сигналов, так как не обладают долговременным действием. Таким образом, звуковые сигналы животных - средство экстренной связи для передачи сообщений как при непосредственном зрительном, тактильном контакте между партнерами, так и при его отсутствии. Дальность передачи акустической информации определяется четырьмя основными факторами: 1) интенсивностью звука; 2) частотой сигнала; 3) акустическими свойствами среды, через которую передается сообщение и 4) порогами слуха животного, принимающего сигнал. Звуковые сигналы, передаваемые на большие расстояния, известны у насекомых, земноводных, птиц и многих видов млекопитающих средних и крупных размеров.

Распространение звука представляет собой волновой процесс. Источник звука передает колебания частицам окружающей среды, а они в свою очередь - соседним частицам, создавая таким образом серию чередующихся сжатий и разрежений с усилением и ослаблением давления воздуха. Эти движения частиц графически изображаются в виде последовательности волн, вершины которых соответствуют сжатиям, а впадины между ними - разрежениям. Скорость движения этих волн в данной среде и есть скорость звука. Число волн, проходящих в секунду через какую-либо точку пространства, называется частотой звуковых колебаний. Ухо того или иного вида животных воспринимает звук лишь в ограниченном диапазоне частот, или длин, волн. Волны с частотой ниже 20 Гц не воспринимаются как звуки, а ощущаются как вибрации. Вместе с тем, колебания с частотой выше 20 000 Гц (так называемые ультразвуковые) также недоступны уху человека, однако воспринимаются ушами целого ряда животных. Другой характеристикой звуковых волн является интенсивность, или громкость, звука, которую определяют по расстоянию от пика или впадины волны до средней линии. Интенсивность служит и мерой энергии звука.

Звуковые сигналы . Звуковые сигналы, издаваемые животными, могут восприниматься ими на большом расстоянии. Тональность и частота звуковых сигналов зависят от образа жизни животных. Так, низкочастотные звуки лучше всего проникают через густую растительность; к этому типу сигналов обычно относятся крики лесных тропических птиц, а также обезьян, населяющих эти леса. Звуки, издаваемые многими приматами, специально рассчитаны на слышимость на большие расстояния. Распространение звукового сигнала зависит также от способа его издавания. Территориальные птицы поют свои песни, выбирая для этого самую высокую точку местности ("песенный пост"), что повышает эффективность их распространения. Птицы открытых ландшафтов, например жаворонки и луговые коньки, поют, летая высоко над своим гнездовым участком. В воде звуки распространяются с меньшим затуханием, чем в воздухе, и поэтому водные животные широко используют их для коммуникации. Рекорд дальности в звуковой коммуникации животных поставлен горбатыми китами, их песни могут восприниматься другими китами, находящимися на расстоянии нескольких десятков километров.

Большое значение имеет акустическая коммуникация для размножения. Так, рев оленей-быков оказывает стимулирующее воздействие на половую сферу самок, это обеспечивает синхронизацию полового созревания. У оленей в брачный период ревут только самцы. У лисиц, кошек голос подают как самцы, так и самки. У лосей первой сигнализирует храпом о месте своего нахождения самка, а потом на него откликается самец.

Средства акустической коммуникации, характерные для представителей семейства собачьих делятся большинством исследователей на две группы: контактные и дистантные. К контактным сигналам относятся рычание, скуление, фырканье, визг, писк. Эти сигналы издаются животным в ситуациях непосредственного контакта между животными. Все они могут проявляться в разных ситуациях. Скуление - первый сигнал, появляющийся у щенков. По своей сути скуление - ответ на дискомфорт. Взрослые звери скулят при болевых воздействиях, социальной изоляции, при взаимодействиях дружеского порядка, нетерпении. Визг - сигнал боли, в большинстве случаев он блокирует агрессию нападающего. Рычание издается собакой при агрессивных взаимодействиях, это сигнал угрозы. Большая доля игр, особенно щенячьих, сопровождается рычанием. Фыркают обычно настороженные звери. У домашних собак или прирученных зверей подобные сигналы часто бывают обращены к человеку и могут служить призывом к контакту, признаком нетерпения или просьбой о чем-нибудь. Каждый из них имеет множество модуляций.

К дистантным сигналам относятся лай и вой. Лают собаки в разных ситуациях совершенно по-разному. Лай может быть разной тональности, громкости и частоты. По характеру лая собаки внимательный хозяин почти всегда может определить его причину. Так, например, охотник безошибочно определяет, какую дичь обнаружила его лайка. Она совершенно по-разному облаивает лося или медведя, белку или рябчика. Характер лая гончих тоже бывает совершенно разным при гоне зайца или лисицы, по следу или "по-зрячему". Самым приблизительным образом лай можно разделить на следующие категории: лай разной интенсивности при активно-оборонительной реакции разной степени; лай разной интенсивности при разной степени пассивно-оборонительной реакции; лай-приветствие; лай в игре; лай в закрытом помещении или на привязи; лай-требование обратить на себя внимание и т.д.

Вой - обычное средство коммуникации представителей семейства собачьих, ведущих стайный образ жизни. Его значение в жизни шакалов, волков и койотов многообразно. Исследователи поведения волков считают, что групповой вой волков играет роль территориальной метки, т.е. свидетельствует о том, что на данной территории находится группа волков. С помощью воя волки и шакалы призывают партнеров.

А.Н. Никольский и К.Х. Фроммольт (1989) разделяют вои волков на индивидуальные и групповые. Среди групповых воев можно выделить спонтанные, когда выть начинают все члены стаи почти одновременно, и вызванные, возникающие в ответ на вой одного из членов стаи, находящегося на расстоянии. Спонтанные и вызванные вои имеют разную сезонную динамику.

Вой волков и шакалов служит для обмена разнообразной информацией между стаями. Домашние собаки воют реже, чем волки, возможно, этот признак частично элиминирован отбором в процессе доместикации. Чаще всего они воют в изоляции или в ответ на звуки, вызывающие у них раздражение, например, на музыку. Очевидно, такие звуки аналогичны спонтанному вою волков, который возбуждает вызванный вой.
Акустическая коммуникация представителей разных таксономических групп
Водные беспозвоночные . Двустворчатые моллюски, усоногие рачки и другие подобные им беспозвоночные производят звуки, открывая и захлопывая свои раковины или домики, а такие ракообразные, как лангусты, издают громкие скребущие звуки, потирая антеннами о панцирь. Крабы предупреждают или отпугивают чужаков, потрясая клешней, пока она не начинает трещать, причем самцы крабов издают этот сигнал даже при приближении человека. Благодаря высокой звукопроводимости воды сигналы, издаваемые водными беспозвоночными, передаются на большие расстояния.

Насекомые. Насекомые, быть может первыми на суше, стали издавать звуки, как правило, похожие на постукивания, хлопки, царапанье и т.п. Эти шумы не отличаются музыкальностью, но производятся они высокоспециализированными органами. На звуковые сигналы насекомых оказывают воздействие интенсивность света, наличие или отсутствие поблизости других насекомых и непосредственный контакт с ними.

Одним из самых распространенных звуков является стридуляция, т.е. стрекотание, вызываемое быстрой вибрацией или потиранием одной части тела о другую с определенной частотой и в определенном ритме. Обычно это происходит по принципу "скребок - смычок". При этом одна нога (или крыло) насекомого, имеющая вдоль края 80-90 маленьких зубчиков, быстро движется взад и вперед по утолщенной части крыла или другой части тела. Стадная саранча и кобылки используют именно такой механизм стрекотания, тогда как кузнечики и трубачики потирают друг о друга видоизмененные передние крылья.

Самым громким стрекотанием отличаются самцы цикады. На нижней стороне брюшка этих насекомых расположены две перепончатые мембраны - т.н. тимбальные органы. Эти мембраны снабжены мышцами и могут выгибаться внутрь и наружу, как донышко у жестянки. При быстром сокращении мышц тимбалов, хлопки или щелчки сливаются, создавая почти непрерывное звучание.

Насекомые могут производить звуки, стуча головой по дереву или листьям, брюшком и передними ногами по земле. Некоторые виды, например бражник мертвая голова, имеют настоящие миниатюрные звуковые камеры и производят звуки, втягивая и выпуская воздух через мембраны в этих камерах.

Многие насекомые, в особенности мухи, комары и пчелы, издают звуки в полете вибрацией крыльев; некоторые из этих звуков используются в коммуникации. Пчелиные матки трещат и гудят: взрослая матка гудит, а неполовозрелые матки трещат, пытаясь выбраться из своих ячеек.

Подавляющее большинство насекомых не имеет развитого слухового аппарата и для улавливания звуковых вибраций, проходящих через воздух, почву и другие субстраты, используют антенны. Некоторые насекомые имеют целый ряд специальных, подобных уху, образований, способствующих более тонкому различению звуковых сигналов.

Рыбы. Утверждение "нем как рыба", давным-давно опровергнуто учеными. Рыбы производят множество звуков, стуча жаберными крышками, и при помощи плавательного пузыря. Каждый вид издает особые звуки. Так, например, морской петух "кудахчет" и "квохчет", ставрида "лает", рыба-барабанщик из породы горбылевых издает шумные звуки, действительно напоминающие барабанный бой, а морской налим выразительно урчит и "хрюкает". Сила звука некоторых морских рыб так велика, что они вызывали взрывы акустических мин, получивших распространение во второй мировой войне и предназначенных, естественно, для поражения кораблей противника. Звуковые сигналы используются для сбора в стаю, как приглашение к размножению, для защиты территории, а также как способ индивидуального распознавания. У рыб нет барабанных перепонок, и они слышат не так, как люди. Система тонких косточек, т.н. веберов аппарат, передает колебания от плавательного пузыря к внутреннему уху. Диапазон частот, которые воспринимают рыбы, сравнительно узок - большинство не слышит звуков выше верхнего "до" и лучше всего воспринимает звуки ниже "ля" третьей октавы.

Земноводные . Среди земноводных только лягушки, жабы и древесные лягушки издают громкие звуки; из саламандр одни пищат или тихо свистят, другие имеют голосовые складки и издают негромкий лай. Звуки, издаваемые земноводными, могут означать угрозу, предупреждение, призыв к размножению, они могут использоваться как сигнал неблагополучия или как средство защиты территории. Некоторые виды лягушек квакают группами по три особи, а большой хор может состоять из нескольких громкоголосых трио.

Пресмыкающиеся. Некоторые змеи шипят, другие издают треск, а в Африке и Азии встречаются змеи, которые стрекочут с помощью чешуек. Поскольку змеи и другие пресмыкающиеся не имеют наружных ушных отверстий, они ощущают только те вибрации, которые проходят через почву. Так что гремучая змея вряд ли слышит собственный треск.

В отличие от змей, тропические ящерицы гекконы имеют наружные ушные отверстия. Гекконы очень громко щелкают и издают резкие звуки.

Весной самцы аллигаторов ревут, призывая самок и отпугивая других самцов. Крокодилы издают громкие тревожные звуки, когда напуганы, и сильно шипят, угрожая вторгшемуся на их территорию чужаку. Детеныши аллигаторов пищат и хрипло квакают, чтобы привлечь внимание матери. Галапагосская гигантская, или слоновая, черепаха издает низкий хриплый рев, а многие другие черепахи угрожающе шипят.

Птицы. У птиц акустическая коммуникация исследована лучше, чем у каких-либо других животных. Птицы общаются с особями своего вида, а также других видов, в том числе с млекопитающими и даже с человеком. Для этого они используют звуковые (не только голосовые), а также зрительные сигналы. Благодаря развитому слуховому аппарату, состоящему из наружного, среднего и внутреннего уха, птицы хорошо слышат. Голосовой аппарат птиц, т.н. нижняя гортань, или сиринкс, располагается в нижнем отделе трахеи.

Стайные птицы используют более разнообразные звуковые и зрительные сигналы, чем птицы одиночные, которые знают иногда всего одну песню и повторяют ее вновь и вновь. У стайных птиц есть сигналы, собирающие стаю, извещающие об опасности, сигналы "все спокойно" и даже призывы к трапезе.

У птиц поют преимущественно самцы, но чаще не для того, чтобы привлечь самок (как обычно считается), а для предупреждения, что данная территория находится под охраной. Многие песни весьма затейливы и спровоцированы выделением в весеннюю пору мужского полового гормона - тестостерона. Большая часть "разговоров" у птиц происходит между матерью и птенцами, которые выпрашивают пищу, а мать их кормит, предупреждает или успокаивает.

Птичье пение формируется и генами, и обучением. Песня птицы, выросшей в изоляции, оказывается неполной, т.е. лишенной отдельных "фраз", входящих в состав песни данного вида.

Неголосовой звуковой сигнал - крыловой барабанный стук - используется воротничковым рябчиком в период спаривания для привлечения самки и предупреждения самцов-конкурентов о необходимости держаться подальше. Один из тропических манакинов во время ухаживания щелкает хвостовыми перьями, как кастаньетами. По крайней мере, одна птица, африканский медоуказчик, прямо общается с человеком. Медоуказчик питается пчелиным воском, но не может извлечь его из дуплистых деревьев, где пчелы устраивают свои гнезда. Неоднократно приближаясь к человеку, громко крича и, затем, направляясь к дереву с пчелами, медоуказчик приводит человека к их гнезду; после того, как мед взят, он поедает оставшийся воск.

Наземные млекопитающие . Звуки, производимые мартышкообразными и человекообразными обезьянами, сравнительно просты. Например, шимпанзе часто кричат и визжат, когда напуганы или рассержены, и это действительно элементарные сигналы. Однако у них также есть и удивительный шумовой ритуал: периодически они собираются в лесу и барабанят руками по торчащим корням деревьев, сопровождая эти действия криками, визгом и воем. Этот барабанно-певческий фестиваль может длиться часами и слышен, по крайней мере, за полтора километра. Есть основания считать, что таким способом шимпанзе созывают своих собратьев к местам, изобилующим пищей.

Среди приматов широко распространена межвидовая коммуникация. Лангуры, например, внимательно следят за тревожными криками и перемещениями павлинов и оленей. Пастбищные животные и павианы реагируют на предупреждающие крики друг друга, так что у хищников мало шансов на внезапное нападение.

Водные млекопитающие . Водные млекопитающие, как и наземные, имеют уши, состоящие из наружного отверстия, среднего уха с тремя слуховыми косточками и внутреннего уха, соединенного слуховым нервом с головным мозгом. Слух у морских млекопитающих превосходный, ему помогает и высокая звукопроводность воды.

К числу самых шумных водных млекопитающих относятся тюлени. В период размножения самки и молодые тюлени воют и мычат, и эти звуки часто инициируются лаем и ревом самцов. Самцы ревут в основном для того, чтобы обозначить территорию, на которой каждый собирает гарем из 10-100 самок. Голосовое общение у самок не столь интенсивное и связано, прежде всего, со спариванием и заботой о потомстве.

Киты постоянно издают такие звуки, как щелканье, скрип, вздохи на низких тонах, а также нечто подобное скрипу ржавых петель и приглушенным ударам. Считается, что многие из этих звуков есть не что иное, как эхолокация, используемая для обнаружения пищи и ориентации под водой. Они также могут быть средством поддержания целостности группы.

Среди водных млекопитающих бесспорным чемпионом по испусканию звуковых сигналов является дельфин афалина. Звуки, издаваемые дельфинами, описываются как стоны, писки, скуление, свист, лай, визг, мяуканье, скрип, щелчки, чириканье, похрюкивание, пронзительные крики, а также как напоминающие шум моторной лодки, скрип ржавых петель и т.п. Эти звуки состоят из непрерывной серии вибраций на частотах от 3000 до более чем 200000 Герц. Они производятся при выдувании воздуха через носовой проход и две клапановидные структуры внутри дыхала. Звуки модифицируются усилением и ослаблением напряжения носовых клапанов и за счет движения "язычков", или "пробок", расположенных внутри воздухоносных путей и дыхала. Производимый дельфинами звук, похожий на скрип ржавых петель, представляет собой "сонар", своеобразный эхолокационный механизм. Постоянно посылая эти звуки и принимая их отражение от подводных скал, рыб и других объектов, дельфины могут легко перемещаться даже в полной темноте и находить рыбу.

Дельфины, несомненно, общаются друг с другом. Когда дельфин издает короткий унылый свист, а за ним свист высокий и мелодичный, это означает сигнал бедствия, и другие дельфины немедленно приплывают на помощь. Детеныш всегда отвечает на адресованный ему свист матери. Когда дельфины рассержены, они "лают", а тявкающий звук, издаваемый только самцами, как полагают, привлекает самок.
Ультразвуковая локация
У летучих мышей и целого ряда других животных выработался своеобразный механизм ориентировки с помощью ультразвуковой локации. Сущность ее заключается в улавливании при помощи очень тонкого слуха отраженных предметами звуков высокой частоты, издаваемых голосовым аппаратом зверька. Учащая ультразвуковые импульсы и улавливая их отражения, летучая мышь способна определять не только наличие предмета, но и расстояния до него и т.п. Такая локация почти полностью заменяет слабо развитое зрение. Сходного типа устройство имеется и у китообразных, способных передвигаться в совершенно непрозрачной воде, не наталкиваясь на препятствия. Достаточно хорошо изучен своеобразный ультразвуковой язык дельфинов. Эхолокация создала предпосылки для возникновения уникальной системы коммуникации, недоступной другим животным.

Применение эхолокации для общения может сочетаться со специальными коммуникационными сигналами. У дельфинов обнаружены свистовые сигналы, названные опознавательными. Зоологи считают, что это собственное имя животного. Отсаженный в отдельное помещение дельфин непрерывно генерирует свои позывные, явно стремясь установить звуковой контакт со стадом. Опознавательные сигналы разных дельфинов отчетливо различаются. Иногда животные генерируют "чужие" позывные. Может быть, дельфины передразнивают друг друга или с помощью чужих позывных окликают своих товарищей, приглашая на "беседу" вполне определенных животных.


ВОПРОСЫ ДЛЯ КОНТРОЛЯ:

  1. Что понимается под языком животных?

  2. Каковы основные функции хемкоммуникации?

  3. Какую роль в жизни животных играет индивидуальный запах?

  4. Зачем животные метят территорию?

  5. Какова роль визуальной коммуникации в общении животных?
Всем животным приходится добывать пищу, защищаться, охранять границы территории, искать брачных партнеров, заботиться о потомстве. Все это было бы невозможно, если бы не существовали системы и средства коммуникации, или общения, животных.

Коммуникация имеет место, когда животное или группа животных подают сигнал, вызывающий ответную реакцию. Обычно (но не всегда) те, кто посылает, и те, кто получает коммуникативный сигнал, принадлежат к одному виду. Животное, получившее сигнал, не всегда отвечает на него явной реакцией. Например, доминирующая в группе человекообразная обезьяна может игнорировать сигнал подчиненной обезьяны; однако даже это пренебрежительное отношение является ответом, поскольку напоминает подчиненному животному, что доминирующая обезьяна занимает более высокое положение в социальной иерархии группы.

Большинство видов не имеет «настоящего языка» в нашем его понимании. «Разговор» животных состоит из относительно немногочисленных основных сигналов, которые необходимы для выживания особи и вида; сигналы эти не несут никакой информации о прошлом и будущем, а также о каких-либо абстрактных понятиях. Тем не менее, по мнению некоторых ученых, человек уже в ближайшие десятилетия сможет общаться с животными, скорее всего с водными млекопитающими.

Коммуникативный сигнал может передаваться звуком или системой звуков, жестом или другими телодвижениями, включая мимические; положением и окраской тела или его частей; выделением пахучих веществ; наконец, физическим контактом между особями.

Животные принимают коммуникативные сигналы и другую информацию о внешнем мире с помощью физических чувств - зрения, слуха и осязания, а также химических чувств - обоняния и вкуса. Для животных с высокоразвитыми зрением и слухом основное значение имеет восприятие зрительных и звуковых сигналов, однако у большинства животных наиболее развиты «химические» чувства. Сравнительно немногие животные, главным образом приматы, передают информацию с помощью комбинации разных сигналов - жестов, телодвижений и звуков, что расширяет возможности их «словаря».

Чем выше положение животного в эволюционной иерархии, тем сложнее его органы чувств и тем совершеннее аппарат биокоммуникации. Например, у насекомых глаза не могут фокусироваться, и они видят лишь расплывчатые силуэты предметов; напротив, у позвоночных глаза фокусируются, поэтому они воспринимают предметы вполне отчетливо. Человек и многие животные издают звуки с помощью голосовых связок, расположенных в гортани. Насекомые издают звуки, потирая одну часть тела о другую, а некоторые рыбы «барабанят», щелкая жаберными крышками.

Все звуки имеют определенные характеристики - частоту колебаний (высоту), амплитуду (громкость), продолжительность, ритм и пульсацию. Каждая из этих характеристик имеет значение для того или иного животного, когда речь идет о коммуникации.

У человека органы обоняния находятся в носовой полости, вкуса - в ротовой; однако у многих животных, например у насекомых, органы обоняния располагаются на усиках (антеннах), а вкусовые органы - на конечностях. Часто волоски (сенсиллы) насекомых служат органами тактильного чувства, или осязания. Когда органы чувств регистрируют изменения в среде, например появление нового зрительного образа, звука или запаха, информация передается в мозг, и этот «биологический компьютер» сортирует и интегрирует все входящие данные так, чтобы его обладатель мог соответствующим образом на них отреагировать.

ВОДНЫЕ БЕСПОЗВОНОЧНЫЕ Водные беспозвоночные общаются главным образом с помощью зрительных и звуковых сигналов. Двустворчатые моллюски, усоногие рачки и другие подобные им беспозвоночные производят звуки, открывая и захлопывая свои раковины или домики, а такие ракообразные, как лангусты, издают громкие скребущие звуки, потирая антеннами о панцирь. Крабы предупреждают или отпугивают чужаков, потрясая клешней, пока она не начинает трещать, причем самцы крабов издают этот сигнал даже при приближении человека. Благодаря высокой звукопроводимости воды сигналы, издаваемые водными беспозвоночными, передаются на большие расстояния.

В коммуникации крабов, омаров и других ракообразных значительная роль принадлежит зрению. Ярко окрашенные клешни крабов-самцов привлекают самок и одновременно предупреждают самцов-соперников, что им лучше держаться на расстоянии. Некоторые виды крабов исполняют брачный танец, при этом они размахивают своими большими клешнями в ритме, характерном для данного вида. Многие глубоководные морские беспозвоночные, например морской червь

Odontosyllis , имеют ритмически вспыхивающие светящиеся органы, называемые фотофорами.

Некоторые водные беспозвоночные, например омары и крабы, имеют вкусовые почки у основания ног. У других нет специальных органов обоняния, но большая часть поверхности тела чувствительна к присутствию в воде химических веществ. Среди водных беспозвоночных химические сигналы используют ресничные инфузории сувойки (

Vorticella ) и морские желуди, из европейских наземных улиток - виноградная улитка (Helix pomatia ) . Сувойки и морские желуди просто выделяют химические вещества, которые привлекают особей их вида, тогда как улитки вонзают друг в друга тонкие дротиковидные «любовные стрелы». Эти миниатюрные образования содержат вещество, которое подготавливает реципиента к переносу спермы.

Ряд водных беспозвоночных, главным образом некоторые кишечнополостные (медузы), используют для коммуникации тактильные сигналы. Если один из членов большой колонии кишечнополостных касается другого, тот сразу сокращается, превращаясь в крохотный комочек. Немедленно все остальные особи колонии повторяют действие сократившегося животного.

РЫБЫ Рыбы используют по крайней мере три типа коммуникативных сигналов: звуковые, зрительные и химические, часто их комбинируя. Рыбы производят звуки, стуча жаберными крышками, а при помощи плавательного пузыря издают ворчание и посвистывание. Звуковые сигналы используются для сбора в стаю, как приглашение к размножению, для защиты территории, а также как способ распознавания. У рыб нет барабанных перепонок, и они слышат не так, как люди. Система тонких косточек, т.н. веберов аппарат, передает колебания от плавательного пузыря к внутреннему уху. Диапазон частот, которые воспринимают рыбы, сравнительно узок - большинство не слышит звуков выше верхнего «до» и лучше всего воспринимает звуки ниже «ля» третьей октавы.

Рыбы обладают хорошим зрением, но плохо видят в темноте, например в глубинах океана. Большинство рыб в той или иной степени воспринимает цвет. Это важно в брачный период, поскольку яркая окраска особей одного пола, обычно самцов, привлекает особей противоположного пола. Изменения окраски служат предупреждением для других рыб, говорящим о том, что не следует вторгаться на чужую территорию. В период размножения некоторые рыбы, например трехиглая колюшка, устраивают брачные танцы; другие, например сомики-кошки, демонстрируют угрозу, поворачиваясь широко открытым ртом в сторону чужака.

Рыбы, подобно насекомым и некоторым другим животным, используют феромоны - химические сигнальные вещества. Сомики-кошки опознают особей своего вида, ощущая вкус выделяемых ими веществ, вероятно продуцируемых гонадами или содержащихся в моче или слизистых клетках кожи. Вкусовые почки сомиков расположены в коже, и любой из них может запомнить вкус феромонов другого, если они хоть раз находились поблизости друг от друга. Следующая встреча этих рыб может окончиться войной или миром в зависимости от сложившихся ранее отношений.

НАСЕКОМЫЕ Насекомые, как правило, - существа крохотные, но их социальная организация может соперничать с организацией человеческого общества. Сообщества насекомых никогда не могли бы сформироваться, а тем более сохраниться, без коммуникации между их участниками. Общаясь, насекомые используют зрительные сигналы, звуки, прикосновения и химические сигналы, включая вкусовые раздражения и запахи, причем они чрезвычайно чувствительны к звукам и запахам. Насекомые, быть может, первыми на суше стали издавать звуки, как правило, похожие на постукивания, хлопки, царапанье и т.п. Эти шумы не отличаются музыкальностью, но производятся они высокоспециализированными органами. На звуковые сигналы насекомых оказывают воздействие интенсивность света, наличие или отсутствие поблизости других насекомых и непосредственный контакт с ними.

Одним из самых распространенных звуков является стридуляция, т.е. стрекотание, вызываемое быстрой вибрацией или потиранием одной части тела о другую с определенной частотой и в определенном ритме. Обычно это происходит по принципу «скребок - смычок». При этом одна нога (или крыло) насекомого, имеющая вдоль края 80-90 маленьких зубчиков, быстро движется взад и вперед по утолщенной части крыла или другой части тела. Стадная саранча и кобылки используют именно такой механизм стрекотания, тогда как кузнечики и трубачики потирают друг о друга видоизмененные передние крылья.

Самым громким стрекотанием отличаются самцы цикады. На нижней стороне брюшка этих насекомых расположены две перепончатые мембраны - т.н. тимбальные органы. Эти мембраны снабжены мышцами и могут выгибаться внутрь и наружу, как донышко у жестянки. Когда мышцы тимбалов быстро сокращаются, хлопки или щелчки сливаются, создавая почти непрерывное звучание.

Насекомые могут производить звуки, стуча головой по дереву или листьям, брюшком и передними ногами по земле. Некоторые виды, например бражник мертвая голова, имеют настоящие миниатюрные звуковые камеры и производят звуки, втягивая и выпуская воздух через мембраны в этих камерах.

Многие насекомые, в особенности мухи, комары и пчелы, издают звуки в полете вибрацией крыльев; некоторые из этих звуков используются в коммуникации. Пчелиные матки трещат и гудят: взрослая матка гудит, а неполовозрелые матки трещат, пытаясь выбраться из своих ячеек.

Подавляющее большинство насекомых не имеет развитого слухового аппарата и для улавливания звуковых вибраций, проходящих через воздух, почву и другие субстраты, используют антенны. Более тонкое различение звуковых сигналов обеспечивают подобные уху тимпанальные органы (у ночных бабочек, саранчи, некоторых кузнечиков, цикад); волосковидные сенсиллы, состоящие из воспринимающих вибрацию щетинок на поверхности тела; хордотональные (струновидные) сенсиллы, расположенные в различных частях тела; наконец, специализированные т.н. подколенные органы в голенях, воспринимающие вибрацию (у кузнечиков, сверчков, бабочек, пчел, веснянок, муравьев).

Многие насекомые обладают двумя типами глаз - простыми глазками и парными сложными глазами, но в целом зрение у них слабое. Обычно они могут воспринимать лишь свет и темноту, но некоторые, в частности пчелы и бабочки, способны различать цвета.

Зрительные сигналы выполняют различные функции. Некоторые насекомые используют их для ухаживания и угроз. Так, у жуков-светляков люминесцентные вспышки холодного желто-зеленого света, производимые с определенной частотой, служат средством привлечения особей другого пола. Пчелы, обнаружив источник пищи, возвращаются в улей и оповещают остальных пчел о его расположении и удаленности с помощью особых перемещений на поверхности улья (т.н. танец пчел).

Постоянное облизывание и обнюхивание друг друга у муравьев свидетельствует о важности прикосновений как одного из средств, организующих этих насекомых в колонию. Подобным же образом, касаясь антеннами брюшка своих «коров» (тлей), муравьи информируют их, что те должны выделить капельку «молочка».

Феромоны используются как половые аттрактанты и стимуляторы, а также как предупреждающие и следовые вещества муравьями, пчелами, бабочками, в том числе тутовым шелкопрядом, тараканами и многими другими насекомыми. Эти вещества, обычно в виде пахучих газов или жидкостей, выделяются специальными железами, расположенными во рту или на брюшке насекомого. Некоторые половые аттрактанты (например, используемые ночными бабочками) настолько эффективны, что могут восприниматься особями того же вида при концентрации всего лишь в несколько молекул на кубический сантиметр воздуха.

ЗЕМНОВОДНЫЕ И ПРЕСМЫКАЮЩИЕСЯ Формы коммуникации земноводных и пресмыкающихся сравнительно просты. Отчасти это объясняется слабо развитым мозгом, а также тем, что у этих животных отсутствует забота о потомстве. Земноводные . Среди земноводных только лягушки, жабы и древесные лягушки издают громкие звуки; из саламандр одни пищат или тихо свистят, другие имеют голосовые складки и издают негромкий лай. Звуки, издаваемые земноводными, могут означать угрозу, предупреждение, призыв к размножению, они могут использоваться как сигнал неблагополучия или как средство защиты территории. Некоторые виды лягушек квакают группами по три особи, а большой хор может состоять из нескольких громкоголосых трио.

Весной, в период размножения, у многих видов лягушек и жаб горло приобретает яркую окраску: часто оно становится темно-желтым, усыпанным черными пятнами, и обычно у самок цвет его ярче, чем у самцов. Некоторые виды используют сезонную окраску горла не только для привлечения партнера, но и как зрительный сигнал, предупреждающий, что территория занята.

Некоторые жабы, обороняясь, испускают сильно закисленную жидкость, вырабатываемую околоушными железами (по одной позади каждого глаза). Колорадская жаба может брызнуть этой ядовитой жидкостью на расстояние до 3,6 м. По крайней мере один вид саламандр использует специальный «любовный напиток», вырабатываемый в брачный период особыми железами, расположенными около головы.

Пресмыкающиеся . Некоторые змеи шипят, другие издают треск, а в Африке и Азии встречаются змеи, которые стрекочут с помощью чешуек. Поскольку змеи и другие пресмыкающиеся не имеют наружных ушных отверстий, они ощущают только те вибрации, которые проходят через почву. Так что гремучая змея вряд ли слышит собственный треск.

В отличие от змей, тропические ящерицы гекконы имеют наружные ушные отверстия. Гекконы очень громко щелкают и издают резкие звуки.

Весной самцы аллигаторов ревут, призывая самок и отпугивая других самцов. Крокодилы издают громкие тревожные звуки, когда напуганы, и сильно шипят, угрожая вторгшемуся на их территорию чужаку. Детеныши аллигаторов пищат и хрипло квакают, чтобы привлечь внимание матери. Галапагосская гигантская, или слоновая, черепаха издает низкий хриплый рев, а многие другие черепахи угрожающе шипят.

Многие пресмыкающиеся отгоняют вторгшихся на их территорию чужаков своего или других видов, демонстрируя угрожающее поведение, - они открывают рот, раздувают части тела (как очковая змея), бьют хвостом и т.п. У змей зрение сравнительно слабое, они видят движение предметов, а не их форму и окраску; более острым зрением отличаются виды, охотящиеся на открытых местах. Некоторые ящерицы, например гекконы и хамелеоны, в период ухаживания исполняют ритуальные танцы или своеобразно покачиваются при движении.

Чувство обоняния и вкуса хорошо развито у змей и ящериц; у крокодилов и черепах оно сравнительно слабое. Ритмически высовывая язык, змея усиливает чувство обоняния, перенося пахучие частицы к специальной сенсорной структуре - расположенному во рту т.н. якобсонову органу. Некоторые змеи, черепахи и аллигаторы выделяют мускусную жидкость в качестве предупреждающих сигналов; другие используют запах как половой аттрактант.

ПТИЦЫ У птиц коммуникация исследована лучше, чем у каких-либо других животных. Птицы общаются с особями своего вида, а также других видов, в том числе с млекопитающими и даже с человеком. Для этого они используют звуковые (не только голосовые), а также зрительные сигналы. Благодаря развитому слуховому аппарату, состоящему из наружного, среднего и внутреннего уха, птицы хорошо слышат. Голосовой аппарат птиц, т.н. нижняя гортань, или сиринкс, располагается в нижнем отделе трахеи.

Стайные птицы используют более разнообразные звуковые и зрительные сигналы, чем птицы одиночные, которые знают иногда всего одну песню и повторяют ее вновь и вновь. У стайных птиц есть сигналы, собирающие стаю, извещающие об опасности, сигналы «все спокойно» и даже призывы к трапезе.

У птиц поют преимущественно самцы, но чаще не для того, чтобы привлечь самок (как обычно считается), а для предупреждения, что территория находится под охраной. Многие песни весьма затейливы и спровоцированы выделением в весеннюю пору мужского полового гормона - тестостерона. Большая часть «разговоров» у птиц происходит между матерью и птенцами, которые выпрашивают пищу, а мать их кормит, предупреждает или успокаивает.

Птичье пение формируется и генами, и обучением. Песня птицы, выросшей в изоляции, неполна, т.е. лишена отдельных «фраз», выпеваемых другими птицами.

Неголосовой звуковой сигнал - крыловой барабанный стук - используется воротничковым рябчиком в период спаривания для привлечения самки и предупреждения самцов-конкурентов о необходимости держаться подальше. Один из тропических манакинов во время ухаживания щелкает хвостовыми перьями, как кастаньетами. По крайней мере одна птица, африканский медоуказчик, прямо общается с человеком. Медоуказчик питается пчелиным воском, но не может извлечь его из дуплистых деревьев, где пчелы устраивают свои гнезда. Неоднократно приближаясь к человеку, громко крича и затем направляясь к дереву с пчелами, медоуказчик приводит человека к их гнезду; после того, как мед взят, он поедает оставшийся воск.

Самцы многих видов птиц в период размножения принимают сложные сигнальные позы, чистят перья, исполняют брачные танцы и совершают различные другие действия, сопровождаемые звуковыми сигналами. Головное и хвостовое оперение, короны и гребни, даже подобное переднику расположение грудных перьев используются самцами для демонстрации готовности к спариванию. Обязательный любовный ритуал у странствующего альбатроса - сложный брачный танец, исполняемый совместно самцом и самкой.

Брачное поведение самцов птиц иногда напоминает акробатические трюки. Так, самец одного из видов райских птиц проделывает самый настоящий кульбит: сидя на ветке на виду у самки, плотно прижимает крылья к телу, падает с ветки, совершает полный кувырок в воздухе и приземляется в исходном положении.

НАЗЕМНЫЕ МЛЕКОПИТАЮЩИЕ Давно известно, что наземные млекопитающие издают брачные клики и звуки угрозы, оставляют пахучие метки, обнюхивают и нежно ласкают друг друга. Однако по сравнению с тем, что мы знаем об общении птиц, пчел и некоторых других животных, сведения о коммуникации наземных млекопитающих довольно скудны.

В общении наземных млекопитающих довольно много места занимает информация об эмоциональных состояниях - страхе, гневе, удовольствии, голоде и боли. Однако этим далеко не исчерпывается содержание коммуникаций даже у животных, не относящихся к приматам. Кочующие группами животные посредством зрительных сигналов поддерживают цельность группы и предупреждают друг друга об опасности; медведи в пределах своего участка обдирают кору на стволах деревьев или трутся о них, информируя таким образом о размерах своего тела и половой принадлежности; скунсы и ряд других животных выделяют пахучие вещества для защиты или в качестве половых аттрактантов; самцы оленей устраивают ритуальные турниры для привлечения самок в период гона; волки выражают свое отношение агрессивным рычанием или дружелюбным помахиванием хвоста; тюлени на лежбищах общаются с помощью криков и особых движений; рассерженный медведь угрожающе кашляет.

Коммуникативные сигналы млекопитающих были выработаны для общения между особями одного вида, но нередко эти сигналы воспринимаются и особями других видов, оказавшимися неподалеку. В Африке один и тот же источник иногда используется для водопоя одновременно разными животными, например гну, зеброй и водяным козлом. Если зебра с ее острым слухом и обонянием чует приближение льва или другого хищника, ее действия информируют об этом соседей по водопою, и они соответственно реагируют. В этом случае имеет место межвидовая коммуникация.

Человек использует для общения голос в неизмеримо большей степени, чем любой другой примат. Для большей экспрессивности слова сопровождаются жестами и мимикой. Остальные приматы используют в общении сигнальные позы и движения гораздо чаще, чем мы, а голос - гораздо реже. Эти компоненты коммуникативного поведения приматов не являются врожденными - животные обучаются различным способам общения по мере взросления.

Воспитание детенышей в дикой природе основано на подражании и выработке стереотипов; за ними ухаживают большую часть времени и наказывают, когда необходимо; они узнают о том, что съедобно, наблюдая за матерями, и учатся жестам и голосовому общению в основном методом проб и ошибок. Усвоение коммуникативных стереотипов поведения - процесс постепенный. Наиболее интересные особенности коммуникативного поведения приматов легче понять, если учесть обстоятельства, в которых используются разные типы сигналов - химические, тактильные, звуковые и зрительные.

Химические сигналы . Химические сигналы чаще всего используются теми приматами, которые являются потенциальными жертвами и занимают ограниченную территорию. Обоняние имеет особое значение для обитающих на деревьях примитивных ночных приматов (полуобезьян), таких, как тупайи и лемуры. Тупайи метят территорию с помощью секрета желез, расположенных в коже горла и груди. У некоторых лемуров такие железы находятся подмышками и даже на предплечьях; передвигаясь, животное оставляет на растениях свой запах. Другие лемуры используют для этой цели мочу и фекалии.

Высшие обезьяны, подобно человеку, не имеют развитой обонятельной системы. Кроме того, лишь немногие из них обладают кожными железами, специально предназначенными для выработки сигнальных веществ.

Тактильные сигналы . Прикосновения и другие телесные контакты - тактильные сигналы - широко используются обезьянами при общении. Лангуры, павианы, гиббоны и шимпанзе часто дружески обнимают друг друга, а павиан может слегка дотронуться, толкнуть, ущипнуть, куснуть, обнюхать или даже поцеловать другого павиана в знак искренней симпатии. Когда два шимпанзе встречаются впервые, они могут осторожно дотронуться до головы, плеча или бедра незнакомца.

Обезьяны постоянно перебирают шерсть - чистят друг друга (такое поведение называется грумингом), что служит проявлением подлинной близости, интимности. Груминг особенно важен в тех группах приматов, где поддерживается социальное доминирование, например у макаков-резусов, павианов и горилл. В таких группах подчиненная особь часто сообщает, громко чмокая губами, что она хочет почистить другую, занимающую более высокое положение в социальной иерархии.

Звуки, производимые мартышкообразными и человекообразными обезьянами, сравнительно просты. Например, шимпанзе часто кричат и визжат, когда напуганы или рассержены, и это действительно элементарные сигналы. Однако у них также есть и удивительный шумовой ритуал: периодически они собираются в лесу и барабанят руками по торчащим корням деревьев, сопровождая эти действия криками, визгом и воем. Этот барабанно-певческий фестиваль может длиться часами и слышен по крайней мере за полтора километра. Есть основания считать, что таким способом шимпанзе созывают своих собратьев к местам, изобилующим пищей.

Давно известно, что гориллы бьют себя в грудь. На самом деле это не удары кулаком, а шлепки полусогнутыми ладонями по раздутой груди, поскольку предварительно горилла набирает полную грудь воздуха. Шлепки информируют членов группы, что поблизости посторонний, а возможно и враг; в то же время они служат предупреждением и угрозой чужаку. Биение в грудь - лишь одно из целой серии подобных действий, включающих также сидение в выпрямленном положении, боковой наклон головы, крики, ворчание, вставание на ноги, срывание и разбрасывание растений. Полностью такие действия вправе осуществлять только доминирующий самец - вожак группы; подчиненные самцы и даже самки исполняют части репертуара. Гориллы, шимпанзе и павианы ворчат и издают лающие звуки, а гориллы еще и ревут в знак предупреждения и угрозы.

Зрительные сигналы . Жесты, мимика, а иногда также положение тела и цвет морды - основные зрительные сигналы высших обезьян. Среди угрожащих сигналов - неожиданное вскакивание на ноги и втягивание головы в плечи, удары руками по земле, яростное сотрясание деревьев и беспорядочное разбрасывание камней. Демонстрируя яркий цвет морды, африканский мандрил укрощает подчиненных. В сходной ситуации обезьяна-носач с острова Борнео демонстрирует свой огромный нос.

Пристальный взгляд у павиана или гориллы означает угрозу. У павиана он сопровождается частым морганием, движением головы вверх и вниз, прижиманием ушей и изгибом бровей. Для поддержания порядка в группе доминирующие павианы и гориллы то и дело бросают пристальные ледяные взгляды на самок, детенышей и подчиненных самцов. Когда две незнакомые гориллы неожиданно сталкиваются лицом к лицу, пристальный взгляд может оказаться вызовом. Вначале раздается рев, два могучих животных отступают, а затем резко сближаются, наклонив вперед головы. Остановившись перед самым соприкосновением, они начинают пристально смотреть друг другу в глаза, пока один из них не отступит. Настоящие схватки редки.

Такие сигналы, как гримасничанье, зевота, движение языка, прижимание ушей и чмокание губами, могут быть и дружественными, и недружественными. Так, если павиан прижимает уши, но не сопровождает это действие прямым взглядом или морганием, его жест означает подчинение.

Шимпанзе используют для общения богатую мимику. Например, плотно сжатые челюсти с обнаженными деснами означают угрозу; хмурый взгляд - запугивание; улыбка, особенно с высунутым языком, - дружелюбие; оттягивание нижней губы, пока не покажутся зубы и десны, - умиротворенную усмешку; надувая губы, мать-шимпанзе выражает свою любовь к детенышу; повторяющаяся зевота означает замешательство или затруднение. Шимпанзе часто зевают, когда заметят, что за ними кто-то наблюдает.

Некоторые приматы используют в общении хвост. Например, самец лемура ритмично движет хвостом перед спариванием, а самка лангура опускает хвост до земли, когда к ней подходит самец. У некоторых видов приматов подчиненные самцы при приближении доминирующего самца поднимают хвосты, обозначая свою принадлежность к низшему социальному рангу.

Звуковые сигналы . Среди приматов широко распространена межвидовая коммуникация. Лангуры, например, внимательно следят за тревожными криками и перемещениями павлинов и оленей. Пастбищные животные и павианы реагируют на предупреждающие крики друг друга, так что у хищников мало шансов на внезапное нападение. ВОДНЫЕ МЛЕКОПИТАЮЩИЕ Звуки как сигналы . Водные млекопитающие , как и наземные, имеют уши, состоящие из наружного отверстия, среднего уха с тремя слуховыми косточками и внутреннего уха, соединенного слуховым нервом с головным мозгом. Слух у морских млекопитающих превосходный, ему помогает и высокая звукопроводность воды.

К числу самых шумных водных млекопитающих относятся тюлени. В период размножения самки и молодые тюлени воют и мычат, и эти звуки часто заглушаются лаем и ревом самцов. Самцы ревут в основном для того, чтобы обозначить территорию, на которой каждый собирает гарем из 10-100 самок. Голосовое общение у самок не столь интенсивное и связано прежде всего со спариванием и заботой о потомстве.

Киты постоянно издают такие звуки, как щелканье, скрип, вздохи на низких тонах, а также нечто подобное скрипу ржавых петель и приглушенным ударам. Считается, что многие из этих звуков есть не что иное, как эхолокация, используемая для обнаружения пищи и ориентации под водой. Они также могут быть средством поддержания целостности группы.

Среди водных млекопитающих бесспорным чемпионом по испусканию звуковых сигналов является дельфин афалина (

Tursiops truncatus ). Звуки, издаваемые дельфинами, описываются как стоны, писки, скуление, свист, лай, визг, мяуканье, скрип, щелчки, чириканье, похрюкивания, пронзительные крики, а также как напоминающие шум моторной лодки, скрип ржавых петель и т.п. Эти звуки состоят из непрерывной серии вибраций на частотах от 3000 до более чем 200 000 герц. Они производятся при выдувании воздуха через носовой проход и две клапановидные структуры внутри дыхала. Звуки модифицируются усилением и ослаблением напряжения носовых клапанов и за счет движения «язычков» или «пробок», расположенных внутри воздухоносных путей и дыхала. Производимый дельфинами звук, похожий на скрип ржавых петель, представляет собой «сонар», своеобразный эхолокационный механизм. Постоянно посылая эти звуки и принимая их отражение от подводных скал, рыб и других объектов, дельфины могут легко перемещаться даже в полной темноте и находить рыбу.

Дельфины несомненно общаются друг с другом. Когда дельфин издает короткий унылый свист, а за ним свист высокий и мелодичный, это означает сигнал бедствия, и другие дельфины немедленно приплывают на помощь. Детеныш всегда отвечает на адресованный ему свист матери. Когда дельфины рассержены, они «лают», а тявкающий звук, издаваемый только самцами, как полагают, привлекает самок.

Зрительные сигналы . Зрительные сигналы не имеют существенного значения в коммуникации водных млекопитающих. В целом их зрение не отличается остротой и к тому же затруднено малой прозрачностью океанской воды. Стоит упомянуть один из примеров визуальной коммуникации: у тюлена-хохлача над головой и мордой расположен надувающийся мускулистый мешок. При возникновении угрозы тюлень быстро раздувает мешок, который становится ярко-красным. Это сопровождается оглушительным ревом, и нарушитель границ (если это не человек) обычно отступает.

Некоторые водные млекопитающие, особенно те, что проводят часть времени на суше, совершают демонстративные действия, связанные с защитой территории и размножением. За этими немногими исключениями, зрительная коммуникация используется слабо.

Обонятельные и тактильные сигналы . Обонятельные сигналы, вероятно, не играют большой роли в коммуникации водных млекопитающих, служа лишь для взаимного опознавания родителей и детенышей у тех видов, которые проводят значительную часть жизни на лежбищах, например у тюленей. Киты и дельфины обладают, по-видимому, обостренным чувством вкуса, помогающим определить, стоит ли есть пойманную рыбу.

У водных млекопитающих тактильные органы распределены по всей коже, и чувство прикосновения, особенно важное в периоды ухаживания и заботы о потомстве, хорошо развито. Так, в брачный период пара морских львов часто сидит лицом друг к другу, сплетаясь шеями и часами лаская друг друга.

МЕТОДЫ ИЗУЧЕНИЯ В идеале коммуникацию животных следует изучать в природных условиях, но в отношении многих видов (особенно млекопитающих) сделать это трудно из-за скрытного характера животных и их постоянных передвижений. Кроме того, многие животные ведут ночной образ жизни. Птицы часто пугаются малейшего движения или даже просто вида человека, а также предупреждающих криков и действий других птиц. Лабораторные исследования поведения животных позволяют получить много новой информации, но в неволе животные ведут себя иначе, чем на свободе. У них даже развиваются неврозы и зачастую прекращается репродуктивное поведение.

Любая научная проблема требует, как правило, применения методов наблюдения и эксперимента. И то и другое лучше проводить в контролируемых условиях лаборатории. Однако для изучения коммуникации лабораторные условия не вполне пригодны, так как ограничивают свободу действий и реакций животного.

В полевых исследованиях для наблюдения за некоторыми млекопитающими и птицами используются укрытия из кустов и веток. Человек, находящийся в укрытии, может перебить свой запах несколькими каплями жидкости, выделяемой скунсом, или другим сильно пахнущим веществом.

Для фотографирования животных необходимы хорошие камеры и особенно телеобъективы. Однако шум, издаваемый камерой, может спугнуть животное. Для изучения звуковых сигналов используют чувствительный микрофон и звукозаписывающую аппаратуру, а также дисковидный параболический отражатель из металла или пластика, который фокусирует звуковые волны на микрофоне, помещенном в его центр. После записи могут быть обнаружены звуки, которые человеческое ухо не слышит. Некоторые звуки, издаваемые животными, лежат в ультразвуковом диапазоне; их можно услышать, прокручивая ленту с меньшей скоростью, чем при записи. Это особенно полезно при изучении звуков, издаваемых птицами.

С помощью звукового спектрографа получают графическую запись звука, «голосовой отпечаток». «Препарируя» звуковую спектрограмму, можно выявить различные компоненты птичьего крика или звуков других животных, сравнить брачные призывы, призывы к пище, звуки-угрозы или предупреждения и иные сигналы.

В лабораторных условиях изучают в основном поведение рыб и насекомых, хотя получено и немало сведений о млекопитающих и других животных. Дельфины довольно быстро привыкают к открытым лабораториям - бассейнам, дельфинариям и т.п. Лабораторные компьютеры «запоминают» звуки насекомых, рыб, дельфинов и других животных и позволяют выявить стереотипы коммуникативного поведения.

Если бы человек научился общению с животными, это принесло бы немало пользы. Например, мы могли бы получать от дельфинов и китов информацию о жизни моря, недоступную или по крайней мере труднодоступную для человека. Изучив коммуникативные системы животных, человек сможет лучше подражать зрительным и звуковым сигналам птиц и млекопитающих. Такое подражание уже принесло пользу, позволяя приманивать изучаемых животных в их естественных местообитаниях, а также отпугивать вредителей. Записанные на пленку крики тревоги воспроизводят через громкоговорители для отпугивания скворцов, чаек, ворон, грачей и других птиц, повреждающих посадки и посевы, а синтезированные половые аттрактанты насекомых применяют для заманивания насекомых в ловушки. Исследования строения «уха», расположенного на передних ногах кузнечика, позволили усовершенствовать конструкцию микрофона.

ЛИТЕРАТУРА Лилли Дж. Человек и дельфин . М., 1965
Шовен Р. От пчелы до гориллы . М., 1965
Гудолл Дж. Шимпанзе в природе: поведение . М., 1992

Исследование происхождения человеческого языка невозможно без изучения коммуникативных систем животных - иначе мы не сможем выделить ни то новое, что появилось у человека по сравнению с животными, ни те полезные для развития языка свойства, которые к началу его эволюции уже имелись. Неучет факторов такого рода ослабляет выдвигаемые гипотезы. Например, Т. Дикон отводит ключевую роль в происхождении языка употреблению знаков-символов (его книга так и называется - “The symbolic species”, “Символический вид” 1 ) - но поскольку способность к их употреблению обнаруживают и многие животные (причем, как мы увидим ниже, не только в условиях эксперимента), на роль главной движущей силы глоттогенеза пользование символами не годится.

Впрочем, исследование коммуникации животных нужно не только для того, чтобы отвергать подобные гипотезы. Нынешнее состояние науки позволяет поставить и более глубокие вопросы: с чем коррелирует наличие у коммуникативной системы тех или иных характеристик? Какие существуют направления эволюции коммуникативных систем и чем они могут определяться?

Прежде всего необходимо понимать, что за словом “животные” скрывается огромное количество самых разных существ, одни из которых близки к человеку до такой степени, что осмысленно ставить вопрос о тех свойствах, необходимых для коммуникации, которыми обладал их общий предок, другие же далеки настолько, что у общих предков заведомо никаких релевантных для коммуникации свойств быть не могло. Таким образом, следует различать “гомологии” и “аналогии” - под первым термином понимаются свойства, развившиеся из того общего наследия, которое досталось от общего предка, под вторым - характеристики, которые, будучи внешне сходными, развились в ходе эволюции независимо. Например, наличие двух пар конечностей у человека и крокодила - гомология, а обтекаемая форма тела у рыб, дельфинов и ихтиозавров имеет аналогическую природу.

Рис. 4.1. Сравнение языка с коммуникативными системами других видов по критериям Ч. Хоккета 2 .

Когда по критериям, предложенным Ч. Хоккетом, было проведено сравнение языка с коммуникативными системами нескольких разных видов животных (колюшки, серебристой чайки, пчелы и гиббона), оказалось, что больше всего общих черт с языком набирает коммуникативная система медоносной пчелы (Apis mellifera ). Виляющий танец пчел обладает такими свойствами, как продуктивность и перемещаемость; он является специализированным коммуникативным действием; те, кто может производить сигналы этого типа, могут и понимать их (последнее называется “свойством взаимозаменяемости”). До некоторой степени в танце пчел можно усмотреть даже произвольность знака: один и тот же элемент виляющего танца у немецкой пчелы обозначает расстояние в 75 метров до источника корма, у итальянской - 25 метров, а у пчелы из Египта - всего пять 3 . Соответственно, эта коммуникативная система является (по крайней мере, отчасти) выучиваемой - как показали эксперименты Нины Георгиевны Лопатиной 4 , пчела, выращенная в изоляции и не имевшая возможности наблюдать за танцами взрослых особей, не понимает смысла танца, не может “считывать” с него передаваемую информацию. С формальной точки зрения в танцах пчел можно выделить элементарные компоненты (см. ниже), различные комбинации которых составляют разные смыслы (подобно тому, как в человеческом языке различные комбинации фонем дают разные слова) 5 .

Определенные аналогии можно усмотреть между человеческим языком и коммуникативными системами некоторых видов муравьев. Как показали опыты Ж.И. Резниковой (см. фото 16 на вклейке), проведенные с муравьями-древоточцами Camponotus herculeanus , их сигнализация обладает свойством продуктивности и свойством перемещаемости: муравьи способны сообщать своим сородичам о различных местах нахождения корма. При этом они могут сжимать информацию: путь типа “все время направо” описывается короче, чем путь типа “налево, потом направо, еще раз направо, потом налево и потом направо”. Информация о том же самом, хорошо знакомом месте передается быстрее, чем о другом. Хотя прямой расшифровке коммуникативная система муравьев не поддается, эта аналогия показывает, что такие свойства, видимо, с неизбежностью возникают в коммуникативной системе, которая должна обеспечивать передачу большого количества разнообразной информации.

Как отмечает Ж.И. Резникова, использование разными видами муравьев разных типов передачи информации связано с их образом жизни и теми задачами, которые им приходится решать. Тем видам, у которых численность семьи составляет не более нескольких сотен особей, развитая знаковая система не нужна: необходимое количество корма вполне можно собрать на расстоянии двух-трех метров от гнезда, “а на таком расстоянии прекрасно действует и пахучий след” 6 . Напротив, у тех видов, которые живут огромными семьями и собирают корм, удаляясь от гнезда на значительное расстояние, имеются коммуникативные системы, обладающие богатыми выразительными возможностями.

Для звучащей речи большое значение имеют формантные различия - прежде всего именно по ним (а не, скажем, по громкости, длительности или высоте основного тона) мы отличаем разные фонемы друг от друга. Но способность использовать формантные различия представлена и у животных. Как свидетельствует Т. Фитч, виды, использующие звуковую коммуникацию, - например, зеленые мартышки (верветки), японские макаки, журавли, - способны различать форманты не хуже людей 7 . Даже у лягушек есть специальные детекторы, настроенные на те частоты, которые особенно важны для каждого конкретного вида. Формантные различия могут использоваться, в частности, для того, чтобы отличать друг от друга сородичей 8 , для распознавания разных типов сигналов опасности и т. п.

Множество аналогов в животном мире имеет человеческая способность к рекурсии. Самый простой (по крайней мере, с точки зрения человека) мыслительный процесс, требующий применения рекурсии, - это счет: каждое следующее число на единицу больше предыдущего. Но считать, как показали исследования, умеют не только люди 9 , но и шимпанзе (этому посвящены, в частности, специальные эксперименты, проводимые в Киото под руководством Тецуро Мацузавы 10 ), попугаи 11 , ворoны 12 и муравьи 13 . В опытах З.А. Зориной и А.А. Смирновой было показано, что серые вороны могут складывать числа в пределах 4 (и даже оперировать при этом обычными “арабскими” цифрами), муравьи в экспериментах Ж.И. Резниковой продемонстрировали способность “складывать и вычитать в пределах 5” 14 . Макаки-резусы (в опытах американских исследователей Элизабет Бреннон и Герберта Террейса) “считали” (последовательно дотрагиваясь на экране до изображений групп с разным количеством предметов) по возрастанию и по убыванию от 1 до 4 и от 5 до 9 15 .

Наиболее разработана аналогия между человеческим языком и песней певчих птиц (это один из подотрядов отряда воробьиных). Песня делится на слоги - отдельные спектральные события, имеющие более звучную вершину и менее звучные края. Каждый отдельный слог, подобно фонеме, не имеет собственного значения , но их последовательность складывается в песню, несущую определенный смысл. Для распознавания песни существенно, чтобы слоги шли в определенном порядке - иначе представители соответствующего вида не опознают песню как свою 16 .

Подобно языку, песня выучивается во время чувствительного периода, т. е. в ее передаче велико значение культурной составляющей. В чувствительном периоде есть стадия “лепета” (или “подпесни”, англ. subsong ) - подросший птенец-слеток издает разнообразные звуки, как бы пробуя различные возможности голосового аппарата 17 . Издает, в отличие от взрослых самцов, негромко, что называется, “себе под нос”. Для нормального развития вокального репертуара ему необходимо слышать и самого себя, и взрослых представителей своего вида. Обучение происходит посредством звукоподражания, причем это подражание является самоподдерживающимся - как и детям, овладевающим языком, птенцам не нужно специальное поощрение за выученные элементы коммуникативной системы. В результате такого обучения складываются - как и в языке - диалекты (местные варианты песни) и идиолекты (индивидуальные варианты песни, которые в работах орнитологов также именуются “диалектами”, что создает некоторую путаницу). У птиц имеется латерализация мозга, причем звукопроизводством управляет в нормальном случае левое полушарие.

Рис. 4.2. Сонограмма песни зяблика (Fringilla coelebs).

У певчих птиц, а также у попугаев и колибри, которые тоже обучаются своим звуковым коммуникативным сигналам посредством звукового подражания, контроль за звукопроизводством осуществляется не теми мозговыми структурами, что у тех видов, у которых звуковые сигналы являются врожденными 18 . Повреждения аналогичных участков мозга приводят к аналогичным нарушениям звукопроизводства: при одних птицы, подобно людям с афазией Брока, теряют способность правильно составлять последовательности звуков, при других - способность выучивать новые звучания, при третьих - сохраняют лишь способность к эхолалическому повторению 19 .

Множество аналогичных черт у языка и с коммуникацией китообразных. В обоих случаях носителем информации является звук (правда, у китообразных, в отличие от человека, большая часть сигналов передается в ультразвуковом диапазоне). У дельфинов есть “имена собственные” - знаменитый “свист-подпись”: этим сигналом (индивидуальным для каждой особи) дельфины завершают свои сообщения, и с его помощью их можно позвать. У касаток Orcinus orca были обнаружены локальные диалекты 20 . Как и в языках людей, одни “слова” (звуковые сигналы) у касаток более стабильны, другие сравнительно быстро (у касаток - на протяжении порядка 10 лет) меняются 21 .

Звуковые сигналы дельфинов-афалин (Tursiops truncatus ), согласно наблюдениям В.И. Маркова 22 , комбинируются в комплексы нескольких уровней сложности. Комплекс, состоящий из нескольких звуков, сгруппированных определенным образом, может входить составной частью в комплекс более высокого уровня подобно тому, как слово, состоящее из нескольких фонем, входит составной частью в более сложный комплекс - предложение. Так же, как фонема может быть описана как совокупность смыслоразличительных признаков, в звуковых сигналах дельфинов могут быть выделены отдельные компоненты, противопоставляющие один звук другому.

Скорее всего, столь сложное устройство сигналов говорит о том, что у дельфинов (как и у людей) есть возможность (а значит, вероятно, и необходимость) кодировать большое (по подсчетам Маркова, потенциально даже бесконечно большое) количество разнообразной информации.

По-видимому, коммуникативная система дельфинов позволяет им передавать в том числе и весьма конкретные сведения. В эксперименте, проведенном Уильямом Эвансом и Джарвисом Бастианом 23 , два дельфина (самец Базз и самка Дорис) были обучены нажимать на педали в определенном порядке, чтобы получать пищевое подкрепление. Порядок менялся в зависимости от того, ровно горела лампочка над бассейном или же мигала, а подкрепление выдавалось лишь в том случае, когда на педали в правильном порядке нажимали оба дельфина. Когда лампочку установили так, чтобы ее могла видеть только Дорис, она оказалась в состоянии “объяснить” Баззу через непрозрачную стенку бассейна, в каком порядке следует нажимать на педали, - в 90 % случаев правильно.

Рис. 4.3. Схема опыта В. Эванса и Дж. Бастиана 2

В опытах В.И. Маркова и его коллег дельфины передавали друг другу информацию о размере мяча (большой он или маленький) и о том, с какой стороны предъявляет его экспериментатор (справа или слева) 25 .

Как показали Дэвид и Мелба Колдуэллы, дельфины, подобно людям, способны опознавать сородичей по голосу - независимо от того, что конкретно тот говорит (или, в случае дельфинов, свистит) 26 . И у китообразных, и у певчих птиц, как и у человека, вокализация произвольна. Она независима от лимбической системы (подкорковых структур), не свидетельствует об эмоциональном возбуждении и осуществляется скелетной мускулатурой 27 . Органы же звукопроизводства при этом совершенно разные: у человека это прежде всего гортань с голосовыми связками, у дельфинов и китов - назальные мешки, у птиц - сиринкс (иначе “нижняя гортань”, расположенная не в начале трахеи, как гортань млекопитающих, а в том месте, где от трахеи ответвляются бронхи; эволюционное происхождение сиринкса и гортани млекопитающих различно).


Рис. 4.4. Мозг дельфина, человека, орангутана и собаки.

У китообразных, как и у певчих птиц, имеется латерали-зация мозга. Но если у китообразных, как и у человека, асимметрично устроена кора больших полушарий (неокортекс), то у птиц это свойство реализовано на базе хотя и гомологичных новой коре, но все же не тождественных ей структур - нидопаллиума и гиперпаллиума (раньше их называли неостриатум и гиперстриатум соответственно) 28 .

Впрочем, асимметрия мозговых структур обнаруживается у самых разных животных, в том числе у угрей, тритонов, лягушек и акул 29 .

И для китообразных, и для певчих птиц чрезвычайно важна способность к звукоподражанию. Так, дельфины заимствуют “свист-подпись” у других дельфинов той же группы. Впрочем, способность к звукоподражанию была обнаружена у целого ряда видов, пользующихся звуковой коммуникацией, - она есть не только у певчих птиц и у китообразных, но и у летучих мышей, тюленей 30 , слонов 31 , а возможно, даже у мышей. Способность к обучению звуковым элементам коммуникации, по-видимому, характерна прежде всего для тех видов, у которых звук используется для поддержания социальной структуры.

Все эти (и другие, которые наверняка будут еще открыты) сходные черты коммуникативных систем певчих птиц, китообразных и человека, как можно видеть, приобретены независимо. Поскольку эти сходства охватывают целый комплекс свойств, их возникновение в ходе эволюции, вероятно, представляло собой процесс с положительной обратной связью, и ответ на вопрос о том, что является причиной, а что следствием, далеко не очевиден. В частности, по мнению Т. Дикона, асимметрия, присущая человеческому мозгу, является скорее следствием, нежели причиной возникновения языка 32 .

Изучение коммуникации животных позволяет разрешить самую непостижимую для некоторых исследователей “загадку языка” - почему он вообще возможен. Действительно, особь, производящая коммуникативные действия, тратит свое время и силы, становится более заметной хищникам - ради чего? Зачем передавать информацию другим вместо того, чтобы воспользоваться ею самому 33 ? Почему бы не обмануть сородичей, чтобы получить свою выгоду 34 ? Зачем пользоваться информацией от других, а не собственными ощущениями 35 ? Или, может быть, выгоднее собирать информацию на основе сигналов других особей, а самому “молчать” (тем самым не платя высокую цену за производство сигнала)? Подобные рассуждения приводят, например, к идее, что язык развился для манипулирования сородичами (см. подробнее ниже, гл. 5). Или, может быть, появление языка вообще не связано с информационным обменом? Может быть, язык возник исключительно как инструмент мышления, как считает Ноам Хомский, или даже вообще в качестве игры, как полагает антрополог Крис Найт 36 ?

В самом деле, если анализировать действие естественного отбора на индивидуальном, а не на групповом уровне, то преимущества коммуникативной системы (любой - не только языка) обнаружить не удается. И это приводит некоторых исследователей к выводу, что естественный отбор не играл никакой роли в процессе глоттогенеза 37 , и возникновение языка, возможно, в принципе не связано с обретением каких-либо адаптивных преимуществ, а просто является побочным эффектом развития каких-то других свойств, например, прямохождения (см. гл. 3) 38 .

Но на самом деле все перечисленные выше вопросы могут быть отнесены не только к человеческому языку - они релевантны для любой коммуникативной системы. И задавать их может лишь человек, не искушенный в этологии. Действительно, любая коммуникация - дело затратное: животное расходует энергию на производство сигнала, тратит время (которое могло бы быть использовано для чего-то, приносящего непосредственную биологическую пользу, например, для питания или гигиенических процедур), во время производства и восприятия сигнала менее внимательно следит за всем остальным, рискуя быть съеденным (классический пример - токующий глухарь, см. фото 19 на вклейке). Кроме того, энергия тратится на поддержание мозговых структур, необходимых для восприятия сигналов, и анатомических структур, необходимых для их производства. Однако “альтруистическое” поведение коммуницирующих особей, идущих на определенные затраты ради того, чтобы (вольно или невольно) передать своим сородичам информацию, ведет в итоге к общему увеличению количества “альтруистов” - даже если внутри своей популяции они проигрывают конкурентную борьбу более “эгоистичным” сородичам, - поскольку популяции, в которых альтруистов много, увеличивают свою численность гораздо более эффективно, чем популяции с преобладанием “эгоистов”. Этот статистический парадокс, известный как “парадокс Симпсона” , был недавно смоделирован на бактериях 39 , среди которых также есть особи, отличающиеся “альтруистическим” поведением, т. е. производящие - с повышением собственных затрат - вещества, способствующие росту всех окружающих бактерий. Чем сильнее конкуренция между группами, тем выше оказывается уровень альтруизма и кооперации внутри отдельных групп 40 .

Коммуникативная система - любая - возникает, развивается и существует не для выгоды особи, подающей сигнал, и не для выгоды особи, его принимающей; ее назначение - даже не организация отношений в паре “говорящий” - “слушающий”. Коммуникативная система представляет собой “специализированный механизм управления в системе популяции в целом” 41 .

Особи одного вида неизбежно оказываются конкурентами друг друга, поскольку претендуют на одни и те же ресурсы (пищу, укрытия, половых партнеров и т. д.). Тем не менее, при выборе места обитания животные предпочитают селиться по соседству с представителями своего вида. Соседство может быть тесным (как, например, у групповых млекопитающих или колониальных птиц) или не очень (например, индивидуальные участки тигров или медведей простираются на многие километры), но даже медведи не стремятся поселиться там, где бы поблизости вообще не было других медведей. И понятно почему: если бы появилась особь, в генах которой было бы заложено стремление поселиться как можно дальше от сородичей (и тем самым избавиться от конкурентов), ей было бы крайне трудно найти себе пару и передать эти гены потомству. Как показали недавние исследования 42 , птицы выбирают гнездовые участки рядом с участками сородичей, но стремятся селиться подальше от представителей видов, занимающих сходную экологическую нишу. Это значит, что конкуренция за ресурсы между представителями одного вида и разных видов устроена неодинаково: если чужаков лучше избегать или выгонять, то со своими можно “договориться” - при помощи коммуникативных взаимодействий распределить ресурсы так, чтобы этих ресурсов (пусть и разного качества) в итоге хватило всем.

Коммуникативная система позволяет каждой особи находить свое место. Например, особь, получившая по итогам коммуникативных взаимодействий высокий ранг, может кормиться тем, что дает много энергии, но требует больших временны х затрат на то, чтобы подготовиться к добыче корма самым специализированным и эффективным методом, - она “знает”, что ее не будут беспокоить слишком часто. Особь же низкоранговая выберет такую пищедобывательную стратегию, которая не сулит большой энергетической выгоды, но зато позволяет часто отвлекаться. И это дает существенный выигрыш, поскольку попытка добывать высокопитательный, но затратный по времени корм обернулась бы для низкоранговой особи настоящей трагедией: среди ее соседей слишком много охотников “самоутвердиться за ее счет” (т. е. повысить свой ранг за счет коммуникативной победы над ней), и реализовать такую стратегию кормления она бы просто не успела. Таким образом, коммуникация значительно ослабляет конкуренцию за ресурсы и позволяет выжить большему количеству представителей одного вида. Подобным же образом коммуникация распределяет особей и в других важных для жизни вида аспектах, например, при половом размножении. Так, высокоранговый олень завоевывает себе целый гарем самок и получает возможность передать свои гены большому количеству потомков. А низкоранговые олени, не имеющие собственного гарема, получают доступ к противоположному полу иначе: потихоньку, пока хозяин гарема не видит, они спариваются с его самками и тем самым тоже обеспечивают себе определенный репродуктивный успех 43 .

Кроме того, у видов, практикующих половое размножение, имеется задача “морально подготовить” партнеров к спариванию. Решение такого рода задач без посредства коммуникативной системы воистину “смерти подобно” - это наглядно показывают австралийские сумчатые мыши (род Antechinus ). Их самцы кидаются на самок, “не говоря ни слова” (т. е. без предварительного обмена какими-либо коммуникативными сигналами), - и в итоге ни один из них не переживает сезона размножения. Как показали данные Иэна Мак-Дональда и его коллег 44 , все погибают от стресса, хотя в принципе организм самца сумчатой мыши рассчитан на более долгую жизнь: если держать его дома в клетке, не подпуская к самкам (и другим самцам, с которыми он также вступал бы в физические, а не в коммуникативные взаимодействия), он проживет примерно года два, как и самка.

Рис. 4.5. Сумчатая мышь - живое доказательство того, что без коммуникации жить можно, но плохо и недолго.

При высокой плодовитости и отсутствии эффективных хищников такой вид еще может существовать, но при менее благоприятных условиях он, вероятно, не выдержал бы конкуренцию с видами, пользующимися коммуникацией.

Наличие в репертуаре вида специальных коммуникативных действий позволяет уменьшить количество прямых физических воздействий на сородичей: если особи могут, обменявшись несколькими сигналами, выяснить, кто из них выше другого в иерархии, имеет больше прав на самку и т. д., отпадает нужда кусать, клевать или как-либо иначе травмировать друг друга. Соответственно, чем более совершенна коммуникативная система вида, тем менее опасными для здоровья партнеров оказываются процессы взаимодействия.

Развитая коммуникативная система дает возможность эффективно организовывать совместную деятельность нескольких особей - даже если в процессе этой деятельности сигналы и не используются. Так, например, волки, которые не имели случая ранее “договориться” между собой о взаимной иерархии, не могут слаженно охотиться на оленя (и, соответственно, вынуждены довольствоваться полевками и другими грызунами). Непосредственно в момент охоты волки не обмениваются сигналами, но “понимание” своего места в иерархии задает некий внутренний ритм движений каждого животного. Совокупность дополняющих друг друга различных “внутренних ритмов” позволяет успешно объединять усилия 45 .

Еще одна задача коммуникативной системы - сортировка особей по территориям. Те, кто коммуницирует успешнее других, имеют наибольшие шансы занять максимально удобные местообитания (т. е. такие, к которым особи данного вида лучше всего приспособлены). Менее успешные коммуниканты оттесняются на периферию. Таким образом коммуникативная система организует структуру популяции, и это позволяет - не конкретным особям, а именно популяции в целом - формировать приспособительный ответ на изменения экологической ситуации.

В целом можно сказать, что возможность общаться позволяет виду (прежде всего именно виду, а не отдельным его представителям) сдвигать свою активность с непосредственной реакции на уже происшедшие события в область экстраполяции и прогноза 46 : в результате действий, которые совершаются не “в пожарном порядке” (после того, как нечто случилось), а в относительно комфортных условиях готовности к общению, будущее оказывается до какой-то степени доступным прогнозированию. Обмен сигналами позволяет особи составить некоторый прогноз на будущее - и действовать, исходя из него. Соответственно, преимущество получают те особи, которые умеют строить свою активность при условии знания , что их ждет дальше. Это обеспечивает виду бoльшую стабильность. Чем более совершенна коммуникативная система, тем в большей степени будущее в результате ее применения становится предсказуемым (а впоследствии и формируемым). Кроме того, “коммуникативная система стимулирует развитие самых разных компенсаторных механизмов у всех, говорящих “не так”” 47 , поскольку “общение продолжается даже при нарушениях в правилах передачи знаков, если партнеры готовы менять установки в сторону нормы 48 .

Рис. 4.6. Такырная круглоголовка (слева) лучше вооружена, чем ее близкая родственница - сетчатая круглоголовка (справа). Поэтому для такырной круглоголовки оказывается полезным использовать коммуникативные сигналы вместо прямых физических воздействий. А для сетчатой круглоголовки, наоборот, выгоднее «сэкономить» на коммуникации: поскольку ее укусы не так страшны, тратить много ресурсов на избавление от них нерентабельно.

Как возникают коммуникативные сигналы, можно наблюдать на примере двух близких видов ящериц - такырной и сетчатой круглоголовок (Phrynocephalus helioscopus, Ph. reticulatus ) 49 . Для круглоголовок необходимо, чтобы самец не спаривался с самкой, которая уже оплодотворена другим самцом (и не тратил попусту свои репродуктивные ресурсы). Соответственно, самка должна уклониться от спаривания. Сетчатая круглоголовка в таких случаях либо убегает, либо кусает самца. Но у такырных круглоголовок такой номер не пройдет: во-первых, такырные круглоголовки более целеустремленные, значит, тактика “убежать” потребует бoльших затрат. А во-вторых, они лучше вооружены, так что укусы нанесут более серьезный ущерб здоровью самца. И тогда возникает коммуникативный сигнал. Легко заметно, что это, в сущности, те же самые движения, что и у сетчатой круглоголовки: движения, отражающие конфликт двух побуждений - убежать и укусить. Но если у сетчатой круглоголовки эти движения определяются чисто эмоционально и могут быть вообще незаметны, то такырная круглоголовка делает их явно напоказ: они более стереотипны, даже несколько неестественны, с резкими, четко выделимыми границами, вся демонстрация продолжается дольше, чем у сетчатой круглоголовки. И это неудивительно: для такырных круглоголовок очень важно, чтобы самец отказался от своих намерений без ущерба для здоровья - как своего, так и самки.

Заметим, что о сколь-нибудь настоящей “сигнализации” тут речь, возможно, и не идет. Самка не хочет ничего сообщить самцу, она просто испытывает очень сильные колебания между намерением укусить и намерением убежать - настолько сильные, что самец успевает заметить этот конфликт мотиваций, и у него запускается - опять-таки, без всякого, вероятно, участия сознания - поведение “прекратить преследование”. И отбор благоприятствует тем популяциям, где чаще рождаются самки, способные максимально тщательно продемонстрировать самцу свои намерения, и самцы, с максимальной эффективностью распознающие демонстрацию самки. Соответственно, у самцов формируются детекторы для обнаружения характеристических черт самочьей “пантомимы”, а самки делают свои движения все более четкими и стереотипными, такими, чтобы их явно очерченные границы максимально хорошо распознавались детекторами самца. Кроме того, демонстрация самки продолжается заметное время - с тем чтобы самец успел распознать сигнал и запустить соответствующую программу поведения.

Впрочем, справедливости ради следует отметить, что у такырных круглоголовок (как, впрочем, и у нас, людей) случаются “коммуникативные неудачи”, так что некоторые самцы в итоге становятся жертвой укусов. Но доля таких самцов существенно (статистически значимо) меньше, чем у сетчатой круглоголовки.

Этот пример наглядно показывает, что для возникновения коммуникативных сигналов не нужен гений, в порыве вдохновения творящий знаки, изобретающий всё новые сочетания форм и смыслов. Не нужно, вероятно, даже сознание. Необходимо лишь, чтобы нервная система могла отслеживать события, происходящие во внешнем мире, и запускать оптимально отвечающие им поведенческие программы. Если для жизни вида окажется важным, чтобы о тех или иных намерениях особи ее сородичи могли узнавать до того, как эти намерения воплотятся в действия, отбор позаботится о том, чтобы сделать соответствующие намерения максимально заметными - с одной стороны, акцентировать некоторые компоненты физических проявлений соответствующего намерения, а с другой - настроить детекторы на их распознавание. Стандартный путь развития коммуникативных систем состоит в том, что особи наблюдают за внешним видом и/или поведением сородичей и у них формируются детекторы для регистрации этого. Вместе с тем элементы внешнего вида и/или поведения сородичей становятся всё более легко регистрируемыми при помощи детекторов. Возникает положительная обратная связь между отправителем и получателем коммуникативного сигнала, заставляющая коммуникативную систему все более - в эволюционной перспективе - усложняться (разумеется, лишь до тех пор, пока затраты на коммуникацию не начнут превышать выгоды от нее). Создать детекторы, регистрирующие те или иные характеристики сородичей, эволюционно проще, чем создать детекторы, пригодные для наблюдения за другими видами, ландшафтом и т. п. (хотя и такие детекторы, разумеется, тоже имеются у организмов), поскольку и бoльшая заметность элементов внешнего вида и/или поведения, и степень восприятия их кодируются в одном и том же геноме и подвергаются фактически одному и тому же естественному отбору.

В принципе, любое поведение животного его сородичи могут заметить и изменить в связи с этим свое собственное поведение. Например, когда голубь клюет ломоть хлеба, другой голубь (или, скажем, воробей) может, увидев это, приблизиться и начать клевать тот же ломоть с другого конца (если, конечно, его не прогонят). Поэтому в животном мире нередки действия, которые имеют как информационную, так и неинформационную составляющую. Например, такими являются действия собаки, метящей территорию собственной мочой: для того, чтобы опорожнить мочевой пузырь, ей достаточно было бы помочиться однократно (а не поднимать лапку у каждого дерева или столба, роняя всякий раз по нескольку капель), но оставленный запах несет информацию для других собак.

О собственно “сигналах”, возможно, следует говорить лишь тогда, когда то или иное действие перестает приносить непосредственную биологическую пользу, становясь только средством передачи информации. В этом случае оно оптимизируется не под изменчивые характеристики окружающего мира, а под жестко настроенные детекторы.

Возможно, именно в грубой работе детекторов разгадка того, почему движения, перешедшие из области обычной повседневной активности в сферу коммуникации, часто становятся резкими и “вычурными”, а их отдельные элементы выдерживаются дольше, чем сходные элементы обычного поведения. Например, райские птицы, демонстрируя, могут часами висеть вниз головой.

Такого рода дискретные, длительно выдерживаемые сигналы зафиксированы у птиц и рептилий, у млекопитающих же во многих случаях структура коммуникативной системы иная. Может быть, дело в том, что кора больших полушарий головного мозга (неокортекс) дает возможность более эффективного распознавания, может быть, в чем-то еще, но у млекопитающих коммуникативные сигналы часто оказываются континуальными, с бесконечным количеством переходных ступеней от одного сигнала к другому. На рисунке 4.7 изображена мимика домашней кошки, соответствующая разным степеням страха и агрессивности. На схеме показаны лишь по три градации для каждой из эмоций, но, разумеется, кошка не автомат, который резко “перещелкивается” из позиции 1 в позицию 2 и далее в позицию 3. Читатель может сам мысленно достроить то бесконечное количество оттенков обоих этих чувств, которое займет промежуточную позицию между любыми двумя соседними клетками данной схемы.

Впрочем, у млекопитающих есть не только эмоциональные сигналы, плавно переходящие один в другой. Сравнительное изучение разных видов, относящихся к одной классификационной группе (т. е. к одному таксону), дает возможность увидеть тенденции развития коммуникативных систем.

Рис. 4.7. Мимика домашней кошки 50 .

Рассмотрим в качестве примера два разных вида сусликов (см. фото 20 на вклейке) - более примитивного (по своему строению) калифорнийского суслика (Spermophilus beecheyi ) и более “прогрессивного” суслика Белдинга (Spermophilus beldingi ). У обоих видов есть сигналы опасности - щебет и свист. У суслика Белдинга свист - сигнал очень сильной опасности, а щебет (или, точнее, его аналог - трель) - умеренной. Заметим еще раз, что под словом “сигнал” здесь не имеется в виду никакого намеренного действия, специально предназначенного для коммуникации. Просто у суслика, который сильнее испуган, звук получается более похожим на свист - тем более, чем сильнее страх. Соответственно, между трелью и свистом возможно бесконечное число промежуточных “сигналов”. Сородичи, слышащие этот звук, “заражаются” соответствующей эмоцией (подобно тому, как людей “заражает” зевота или смех), и у многих из них непроизвольно возникает соответствующая вокализация. К этому уровню развития коммуникации вполне применимо рассуждение Е.Н. Панова 51 , согласно которому никаких “языков” у животных нет.

Но у калифорнийского суслика коммуникативная система устроена принципиально иначе. Свист и щебет становятся референциальными сигналами (англ. referential signals ), т. е. сигналами, обозначающими вполне конкретный объект внешнего мира (называемый в семиотике “референтом”): свист означает “опасность с воздуха”, щебет - “опасность с земли” 52 .

“Этимология” этих сигналов не менее прозрачна, чем “этимология” демонстраций такырной круглоголовки: летящий хищник обычно более опасен (и, соответственно, страшен), чем хищник наземный. Но функционирование свиста и щебета у калифорнийского суслика отличается кардинально. Промежуточных градаций между ними нет - как нет промежуточных градаций между орлом, летящим по воздуху, и койотом, бегущим по земле. Эти сигналы уже не настолько связаны с эмоциями: суслик может быть очень испуган внезапным появлением наземного хищника, но все равно звук, который он издаст, будет (с максимальной вероятностью) щебетом, а не свистом. И наоборот, хищная птица может быть очень далеко в небе и не вызывать большого страха - но суслик, видя ее, будет (в подавляющем большинстве случаев) издавать свист. Сигналы этого типа (хотя они, возможно, также не являются преднамеренными) не “заражают” сородичей эмоциями, а предоставляют им конкретную информацию об окружающем мире.

Соответственно, референциальные сигналы с полным правом можно назвать сигналами-символами (как это сделано в работе этолога Владимира Семеновича Фридмана 53 ), поскольку у них нет обязательной природной связи между формой и смыслом. Интересно, что у этих видов сусликов различается и восприятие сигнала: суслики Белдинга ретранслируют сигнал только в том случае, если сами в достаточной степени напуганы, калифорнийские же суслики способны передавать информацию дальше независимо от своего эмоционального состояния. Интенсивность воздействия сигнала в этой системе пропорциональна не степени возбуждения издающей сигнал особи, а степени стереотипности его внешней формы (поскольку наиболее “правильного” вида сигналы наиболее эффективно распознаются детекторами).

Этот пример показывает, что специализация к определенному типу существования у общественных животных может предполагать не только те или иные анатомические изменения, но и оптимизацию “заметных” действий (коммуникативных сигналов), их освобождение от эмоций и обретение ими способности обозначать конкретные объекты (или ситуации) окружающего мира. Именно на этом уровне развития коммуникативной системы возникает не только произвольность знака, но и возможность оторваться от “здесь и сейчас”: суслику достаточно услышать свист, чтобы мочь запустить поведенческий комплекс, обеспечивающий спасение от хищной птицы, - наблюдать самого хищника ему при этом необязательно. Отрыв от “здесь и сейчас” позволяет особи принимать менее эмоциональное, более “взвешенное” решение о том, что следует делать дальше.

Референциальные сигналы, подобно элементам человеческого языка, характеризуются категориальным восприятием. Это было проверено, в частности, в опытах Алексея Анатольевича Шибкова на самых примитивных представителях отряда приматов - тупайях (Tupaia glis , см. фото 21 на вклейке). Совмещая подачу одного из сигналов, присущих данному виду, со слабым ударом электрическим током, у животных вырабатывали вполне заметную реакцию на данный сигнал - реакцию избегания. Потом характеристики сигнала плавно меняли, постепенно превращая его в другой сигнал того же самого вида. В полном соответствии с моделью категориального восприятия, пока сигнал оставался “тем же самым” (по мнению подопытной тупайи), животные демонстрировали реакцию избегания, но как только сигнал становился “другим”, эта реакция немедленно исчезала 54 .

Системы референциальных сигналов были обнаружены у многих видов животных - у сурикатов (африканских мангустов) Suricata suricatta (различаются типы опасности - наземный хищник, хищная птица, змея) 55 , у кошачьих лемуров Lemur catta (различаются “опасность с земли” и “опасность с воздуха”) 56 , у луговых собачек (наземных грызунов из семейства беличьих) Cynomys gunnisoni 57 и даже у домашних кур (обозначение двух типов опасности - наземный и воздушный хищники - и “пищевой” крик) 58 . Вероятно, развитие таких сигналов из эмоциональных является эволюционной тенденцией - оно прослеживается, в частности, у сурков 59 .

Из референциальных сигналов состоит система предупреждения об опасности у верветок (Cercopithecus aethiops , см. фото 22 на вклейке). Как установили приматологи Дороти Чини и Роберт Сифард 60 , у верветок имеются четко различающиеся сигналы опасности: один крик обозначает орла, другой - леопарда (или гепарда), третий - змею (мамбу или питона), четвертый - опасного примата (павиана или человека). Исследователи проигрывали им магнитофонные записи разных типов криков (в отсутствие соответствующих опасностей), и верветки всякий раз реагировали “правильно”: по сигналу “леопард” бросались на тонкие верхние ветки, по сигналу “орел” спускались на землю, по сигналу “змея” вставали на задние лапы и осматривались. Чтобы выяснить, являются ли сигналы верветок эмоциональными или референциальными, исследователи делали записи длиннее или короче, громче или тише - для эмоциональных сигналов именно эти характеристики имеют основное значение, для референциальных же они совершенно несущественны (подобно тому, как для смысла слова в общем случае не важно, будет ли оно произнесено быстро или медленно, громко или тихо). Опыты показали, что для верветок важна не интенсивность сигнала, а его формантные характеристики.

Рис. 4.8. Это родословное древо сурков (род Marmotta) построено на основании молекулярных данных, но по нему видно, что при переходе от более примитивных видов к более прогрессивным число различных сигналов увеличивается 61 .

Коммуникативную систему верветок нередко рассматривают как промежуточный этап на пути к человеческому языку: сначала сигналов было, как у верветок, лишь несколько, потом, постепенно добавляя по одному сигналу, предки человека добрались в конце концов до языка современного типа 62 . Однако это, по-видимому, неверно. Дело в том, что, во-первых, внешняя форма (звуковая оболочка) сигналов у верветок является врожденной, следовательно, расширение такой коммуникативной системы и добавление в нее новых сигналов может происходить только путем генетических мутаций. Человеческая же система знаков не врожденная, она содержит огромное число элементов (десятки тысяч - для такого количества нужных мутаций просто не хватило бы эволюционного времени) и, кроме того, является принципиально открытой, добавление в нее новых знаков легко происходит за время жизни одного индивида. Возможно, что вы, читая эту главу, пополнили свой лексикон несколькими новыми словами - верветке такого не достичь. Все, что она может сделать за время жизни, - это несколько уточнить форму (акустические характеристики) и значение того или иного крика (например, усвоить, что сигнал “орел” не относится к птицам-падальщикам) .

Во-вторых, в человеческом языке принципиально иначе устроена реакция на сигнал. Если у верветок восприятие сигнала жестко задает поведение, то у человека восприятие сигнала задает лишь начало деятельности по его интерпретации (по мнению Т. Дикона, это вызвано наличием огромного количества ассоциативных связей между словами-символами в мозге 64 ), результаты же этой интерпретации могут зависеть от личного опыта, от индивидуальных особенностей характера, от отношения к подавшему сигнал, от сиюминутных намерений и предпочтений и т. д. и т. п. Поэтому нередко оказывается, что реакция на один и тот же текст у разных слушателей (или читателей) резко различается.

Подобная разница между людьми и верветками вполне объяснима. У верветок функция данного фрагмента коммуникативной системы состоит в том, чтобы обеспечить быстрый запуск правильной поведенческой программы спасения от соответствующего хищника, поэтому любые отклонения от стандартной реакции подавляются отбором. Человек же, в значительной степени вышедший из-под контроля естественного отбора, может себе позволить долгие размышления о смысле услышанного сообщения. Таким образом, хотя верветки относятся, как и мы, к отряду приматов, между их коммуникативной системой и языком нет гомологии, а есть лишь аналогия.

У других представителей церкопитековых, больших белоносых мартышек (Cercopithecus nicticans , см. фото 23 на вклейке), можно наблюдать еще одну аналогию с человеческим языком 65 . У этих мартышек, как и у верветок, есть разные сигналы для разных типов опасностей - крик “пяу” (в англоязычных работах - pyow ) означает “леопард”, крик “хак” (hack ) - “орел”. Но у них, как установили Кейт Арнольд и Клаус Цубербюлер, есть также возможность комбинирования сигналов, и при этом получается, как в человеческом языке, нетривиальное приращение смысла (не сводящееся к простой сумме смыслов составных частей). Когда самец произносит последовательность “пяу-хак” (или, чаще, повторяет каждый из этих криков несколько раз - но именно в такой последовательности), это вызывает не реакцию спасения от леопарда или орла, а перемещение всей группы на достаточно значительное расстояние - более значительное, чем без сигнала “пяу-хак”. Некоторые исследователи склонны видеть в этом сходство с человеческим синтаксисом (два “слова” составляют “предложение”), другие полагают, что это больше напоминает морфологию (сложное слово типа кресло -качалка ), но это не более чем спор об аналогии. В качестве же гомологии с языком здесь можно рассматривать лишь когнитивную возможность получать при комбинировании сигналов нетривиальное приращение значения (ср. вечер - вечерник “студент вечернего отделения института”, но утро - утренник “праздник или представление, устраиваемое утром”: один и тот же суффикс в сочетании с названиями разных частей дня добавляет совершенно разный смысл).

Еще более развернутую аналогию с человеческим языком можно усмотреть в коммуникативной системе мартышек Кемпбелла (, см. фото 24 на вклейке), живущих в национальном парке Таи (Берег Слоновой Кости). Самцы этих обезьян употребляют шесть видов сигналов, которые исследователи (К. Цубербюлер и его соавторы) записывают как “бум”, “крак”, “крак-у”, “хок”, “хок-у” и “вак-у” 66 . Элемент “-у”, выделяемый в трех из этих сигналов, авторы интерпретируют как суффикс. Он, подобно, например, русскому суффиксу - ств (о ) (ср. братство ) или английскому - hood (ср. brotherhood “братство” от brother “брат”), не употребляется отдельно, но определенным образом изменяет значение той основы, к которой присоединяется. Так, сигнал “крак” обозначает леопарда, а сигнал “крак-у” - опасность вообще.

Комбинирование знаков дает, как и у больших белоносых мартышек, нетривиальные приращения смысла. Например, серия криков “крак-у” может быть издана, когда мартышка слышит голос леопарда или крик мартышек диан, предупреждающий о появлении леопарда, но если этому сигналу предшествует дважды повторенный сигнал “бум”, то вся “фраза” интерпретируется как “падает дерево или большая ветка”. Если в серию криков “крак-у”, которой предшествует пара криков “бум”, иногда вставлять крик “хок-у”, получится территориальный сигнал, который самцы издают при встрече на границе участка с другой группой мартышек Кемпбелла. Просто двукратное повторение крика “бум” означает, что самец потерял из виду свою группу (самки, слыша такой сигнал, подходят к самцу). Всего авторы выделили девять возможных “фраз”, скомбинированных из этих шести криков.



Рис. 4.9. Звуковые сигналы мартышек Кемпбелла (сонограммы). Черная стрелка показывает движение формант; пунктирной рамкой обведен “суффикс” “-у” 67 .

В коммуникативной системе мартышек Кемпбелла представлены и правила “порядка слов”: например, сигнал “бум” употребляется только в начале цепочки криков и всегда повторяется дважды, сигнал “хок” предшествует сигналу “хок-у”, если они встречаются вместе, серия криков, предупреждающая об орле, начинается обычно с нескольких криков “хок”, а заканчивается несколькими криками “крак-у” и т. д.

По мнению авторов исследования, в некоторых аспектах эта коммуникативная система приближается к человеческому языку даже больше, чем успехи человекообразных обезьян, обученных языкам-посредникам и умеющих составлять комбинации типа “ВОДА”+“ПТИЦА”, хотя настоящей грамматикой она все же не обладает 68 . И дело здесь не только в том, что правила достаточно просты, а их число невелико. Главное, на мой взгляд, отличие этой системы от человеческого языка - отсутствие в ней достраиваемости: есть шесть криков и девять возможных “предложений”, и этим все ограничивается, новые знаки и новые сообщения не строятся.

Ограниченность исследованного материала не дает возможности судить о том, являются ли все эти сигналы (в том числе содержащие суффикс “-у”) и их комбинации врожденными, присущими всем представителям Cercopithecus campbelli campbelli , или же, по крайней мере, некоторая часть этой системы является культурной традицией данной конкретной популяции. По наблюдениям авторов, верно скорее первое: сигналы издаются без волевого контроля, самцы не демонстрируют намерения информировать сородичей, они просто испытывают эмоции - и на этом фоне у них издаются соответствующие крики. В то же время эти данные показывают, что даже при отсутствии волевого контроля за звукопроизводством жизнь вида, ведущего групповой образ жизни, в лесу, в условиях низкой видимости и большого количества хищников располагает к формированию коммуникативной системы, которая использует комбинации звуковых сигналов (как друг с другом, так и с элементами, не являющимися отдельными сигналами), чтобы из небольшого количества доступных врожденных криков произвести больше различных сообщений.

Если рассмотреть коммуникативные системы различных видов позвоночных, можно увидеть еще одну общую тенденцию - уменьшение степени врожденности. У низших животных, обладающих коммуникативной системой, врожденной является как внешняя форма сигнала, так и его “смысл” (то, что так или иначе будет определять поведение животного, воспринявшего данный сигнал); реакция на сигнал так же врожденна и стереотипна, как и реакция на несигнальные раздражители (поэтому такие сигналы называются релизерными). Например, птенец серебристой чайки, выпрашивая пищу, клюет красное пятно на клюве родителя, и это побуждает родителя покормить птенца, - в этом примере врожденными, инстинктивными, являются как действия птенца, так и реакция взрослой птицы. Сигналы такого рода, разумеется, могут до некоторой степени совершенствоваться в ходе развития отдельной особи (так, птенец чайки с течением времени “натренировывается” более метко попадать в красное пятно), но не более, чем любые другие инстинктивные действия.

У животных, обладающих более высоким уровнем когнитивного развития, появляются так называемые “иерархические” сигналы. Этот термин, введенный этологом В.С. Фридманом, подчеркивает, что основная функция этих сигналов - обслуживание иерархических отношений между особями в пределах группировки. Форма иерархических сигналов еще является врожденной, но “смысл” устанавливается в каждой группировке отдельно. Например, предъявление большим пестрым дятлом своему сородичу крайних рулевых перьев обозначает “это я”, смысл же “эта особь выше меня по иерархии” (или “эта особь ниже меня по иерархии”) сородич, увидевший этот сигнал, достраивает, исходя из опыта предыдущих взаимодействий с данной птицей. Такой смысл не может быть врожденным, поскольку невозможно предугадать заранее место конкретной особи в конкретной группировке. Кроме того, такой смысл может меняться по итогам взаимодействия особей друг с другом.

Следующая ступень развития - так называемые “ad-hoc-сигналы”, имеющиеся лишь у узконосых обезьян (начиная с павианов): эти элементы коммуникативного поведения создаются по ходу дела, для сиюминутных нужд, соответственно, врожденными не являются ни их форма, ни их “смысл”. Такую коммуникативную систему может себе позволить лишь вид с достаточно хорошо развитым мозгом, поскольку, чтобы поддерживать коммуникацию такого рода, особи должны быть готовы придавать сигнальное значение действиям, до этого сигналами не являвшимся.

Человеческий язык представляет собой следующий член этого ряда: бывшие ad-hoc-сигналы начинают закрепляться, накапливаться и передаваться по наследству посредством обучения и подражания - так же, как, например, умение изготавливать орудия труда. В результате получается “инструментальная” (термин А.Н. Барулина) семиотическая система.

В качестве одного из наиболее существенных отличий коммуникативных систем животных от человеческого языка нередко называется то, что они не связаны с индивидуальным опытом, с рассудочной деятельностью, тогда как у человека язык и мышление объединились в ходе эволюции “в одну речемыслительную систему” 69 . Действительно, сигналы с врожденной формой и врожденным смыслом не могут передавать жизненный опыт отдельной особи - только обобщенный опыт вида. Но уже иерархические сигналы отчасти отражают индивидуальный опыт, хотя и лишь в одной, весьма ограниченной области, - опыт конкурентных взаимодействий одной особи с другими. Еще в большей степени связаны с личным опытом ad-hoc-сигналы, поскольку в них как форма, так и смысл могут включать то, что стало известно конкретной особи в течение ее жизни (см. ниже).

Что же касается обезьян, то их звуковые сигналы, хотя и являются по форме врожденными, также, вероятно, могут участвовать в передаче личного опыта. Свидетельницей одного такого случая стала С. Сэвидж-Рамбо после вечерней прогулки по лесу с бонобо Панбанишей. Во время прогулки они заметили на дереве силуэт какой-то крупной кошки и, испугавшись, вернулись в лабораторию, где их встретили бонобо Канзи, Тамули, Матата и шимпанзе Панзи. Обезьяны (вероятно, по невербальным сигналам) догадались, что Панбанишу и С. Сэвидж-Рамбо что-то напугало в лесу - они, пишет Сэвидж-Рамбо, “стали напряженно всматриваться в темноту и издавать мягкие звуки “уху-ух”, говорящие о чем-то необычном. <Панбаниша> тоже начала издавать какие-то звуки, как будто рассказывала им о большой кошке, которую мы видели в лесу. Все остальные слушали и отвечали громкими криками. Неужели она говорит им что-то, чего я не могу понять? Я не знаю” 70 . Какую информацию передала Панбаниша, в точности сказать трудно (йеркишем она не воспользовалась), но “Канзи и Панзи, когда им в очередной раз разрешили погулять, обнаружили колебания и страх именно в этом участке леса. Поскольку их прежде никогда не пугали, похоже, все-таки, что они смогли что-то понять из происшедшего” 71 .

Подобный же “рассказ” наблюдала и отечественный приматолог Светлана Леонидовна Новоселова. Шимпанзе Лада, которую однажды пришлось, несмотря на ее отчаянный вой и сопротивление, вынести на прогулку, на следующий день “поведала” людям о случившемся: “Обезьяна, драматически воздев руки, привстала в своем гнезде на широкой полке, спустилась и, бегая по клетке, воспроизвела интонационно очень верно в своем крике, который продолжался не менее 30 мин, эмоциональную динамику переживаний предшествующего дня. У меня и у всех окружающих сложилось полное впечатление “рассказа о пережитом”” 72 .

Такое поведение было отмечено и в естественных условиях. Джейн Гудолл, долгое время наблюдавшая за поведением шимпанзе в природе, описывает случай, когда в группе шимпанзе, за которой она наблюдала, появилась самка-каннибалка, Пэшн, поедавшая чужих детенышей. Самке Мифф удалось спасти своего детеныша от Пэшн, и впоследствии, когда она встретилась с Пэшн не один на один, а в компании дружественных самцов, Мифф выказала сильное возбуждение и смогла донести до самцов идею, что Пэшн ей очень не нравится и ее надо наказать - по крайней мере, самцы, увидев поведение Мифф, устроили Пэшн агрессивную демонстрацию 73 .

Можно предполагать, что во всех таких случаях обезьяны передают не столько сам конкретный опыт, сколько свои эмоции по его поводу. И, вероятно, в большинстве случаев этого бывает достаточно, поскольку антропоиды способны очень тонко различать нюансы того, что психологи называют “невербальной коммуникацией”. Например, шимпанзе Уошо смогла угадать, что работавшие с ней Роджер и Дебора Футс - муж и жена, хотя они намеренно старались на работе вести себя друг с другом не как супруги, а как коллеги. “Никто не сравнится с шимпанзе в умении понимать невербальные сигналы!” - написал по этому поводу Р. Футс 74 .

Однако, если информация, которую необходимо передать, достаточно необычна, такой способ коммуникации дает сбои. Так, в описанном выше примере объяснить, что в точности произошло, Мифф не смогла - в противном случае самцы бы, наверное, не ограничились демонстрацией, а выгнали бы Пэшн из группы или, по крайней мере, предупредили бы об опасности дружественных им самок.

Впрочем, когда в языковых проектах обезьяны получают в свое распоряжение более совершенное коммуникативное средство - язык-посредник (и, к слову, более понятливого собеседника - человека), они оказываются в состоянии облечь свой собственный опыт и взгляды на мир в знаковую форму (см. примеры в гл. 1).

Рис. 4.10. Виляющий танец.

Попытки расшифровать коммуникативные системы животных предпринимались неоднократно. Одна из наиболее успешных - расшифровка виляющего танца медоносной пчелы австрийским биологом Карлом фон Фришем 75 . Угол между осью танца и вертикалью (если пчела танцует на вертикальной стенке) соответствует углу между направлением на пищу и направлением на Солнце, продолжительность движения пчелы по прямой несет информацию о расстоянии до источника корма; кроме того, имеют значение скорость, с которой движется пчела, виляние брюшком, движение из стороны в сторону, звуковая составляющая танца и т. д. - всего по меньшей мере одиннадцать параметров. Блестящим подтверждением правильности этой расшифровки стала созданная Акселем Михельсеном 76 пчела-робот: ее танцы в улье (см. фото 17 на вклейке), управляемые компьютерной программой, успешно мобилизовывали пчел-сборщиц на поиски корма. Пчелы правильно определяли направление на кормушку и расстояние до нее - даже несмотря на то, что пчела-робот не давала сборщицам запаховой информации.

Но многие другие коммуникативные системы оказались сложнее. Так, не удалось в точности выяснить, какие движения муравьев, прикасающихся антеннами к своим сородичам, информируют их, скажем, о повороте направо. У дельфинов удалось определить лишь “свист-подпись”. Единственный расшифрованный сигнал волков - “звук одиночества”. Гудолл 77 отмечает, что шимпанзе издают звук “хуу” “только при виде небольшой змеи, неизвестного шевелящегося создания или мертвого животного”, - но почти ни про какие другие звуки шимпанзе ничего столь же определенного пока сказать нельзя.

Широко известны опыты Эмила Мензела 78 с шимпанзе. Экспериментатор показывал одному из шимпанзе тайник со спрятанными фруктами, и потом, когда обезьяна возвращалась к своей группе, она неким образом “сообщала” соплеменникам о местонахождении тайника - по крайней мере, те отправлялись на поиски, явно имея представление о том, в каком направлении следует идти, и даже иногда обгоняли сообщавшего. Если одному шимпанзе показывали тайник с фруктами, а другому - с овощами, группа не колеблясь выбирала первый тайник. Если в тайнике была спрятана игрушечная змея, шимпанзе приближались к нему с некоторой опаской. Но как именно шимпанзе передавали соответствующую информацию, так и осталось загадкой. Высокоранговые особи, казалось, не делали для этого вовсе ничего, но тем не менее добивались понимания, низкоранговые, напротив, разыгрывали целую пантомиму, делали выразительные жесты в соответствующем направлении - но все равно мобилизовать группу на поиски тайника им не удавалось.

Для расшифровки смысла того или иного сигнала необходимо, чтобы его появление взаимно-однозначно соответствовало либо некоторой ситуации во внешнем мире, либо строго определенной реакции особей, воспринимающих сигнал. Поэтому так легко оказалось расшифровать систему предупреждения об опасности у верветок: крик с определенными акустическими характеристиками (отличными от характеристик других криков) жестко коррелирует (а) с наличием леопарда в зоне видимости и (б) с убеганием всех слышащих сигнал обезьян на тонкие верхние ветки.

Но большинство сигналов волков, дельфинов, шимпанзе таких жестких корреляций не обнаруживают. Как отмечает Е.Н. Панов, они могут “в разное время выступать в разных качествах” 79 . Например, у шимпанзе один и тот же сигнал оказывается связан и с ситуацией дружелюбия, и с ситуацией подчинения, и даже с ситуацией агрессии. По мнению Панова, это свидетельствует о том, что с точки зрения теории информации “эти сигналы существенно вырождены” 80 и никакого внятного смысла не имеют. Но то же самое рассуждение применимо и ко многим выражениям человеческого языка. Если рассматривать слова не в словаре, где каждому из них приписана вполне определенная семантика, а в составе выражений, произносимых в реальных жизненных ситуациях, легко видеть, что они, подобно сигналам животных, могут в разное время выступать в разных качествах. Например, предложение “Молодец!” может выступать и в качестве похвалы (“Уже все уроки сделал? Молодец!”), и в качестве порицания (“Разбил чашку? Моло-дец!”). Слово “точка” может обозначать начало (“точка отсчета”) и конец (“на этом поставим точку”), маленький черный кружок, изображенный на бумаге (“проведите прямую через точку А и точку В”), и реальное, подчас довольно большое и не всегда круглое место (“торговая точка”). Таким образом, если следовать логике Е.Н. Панова, человеческий язык тоже, пожалуй, придется признать вырожденным с точки зрения теории информации.

Рис. 4.11. Эти шесть сигналов шимпанзе (выделенных этологом Яаном ван Хооффом) могут, хотя и с различной частотой, выступать в разных ситуациях - и при дружелюбном взаимодействии (заштрихованные столбцы), и для демонстрации подчинения (белые столбцы), и при агрессии (черные столбцы). Относительная высота столбцов отражает частоту, с которой каждый сигнал был зафиксирован в соответствующей ситуации. Сигнал “визг с оскаленными зубами” (д) используется во всех трех типах взаимодействий 81 .

В человеческих языках не существует, видимо, ни одного выражения, которое бы вызывало всякий раз одну и ту же реакцию. Даже услышав крик “Пожар!”, одни люди бросятся участвовать в спасении, другие - мародерствовать, третьи станут созерцать происходящее, не предпринимая никаких действий, а четвертые просто пройдут мимо. Как писал Тютчев, “Нам не дано предугадать…”. Не существует и ситуации, которая бы однозначно вызывала появление того или иного сигнала, - люди по-разному строят свои высказывания в зависимости от того, какие элементы ситуации представляются им в данном конкретном случае более важными, учитывают тот фонд знаний, которым, по их представлениям, обладает слушающий, отражают в высказывании свое отношение к ситуации (а нередко и к слушающему) и т. д., и т. д. . Колоссальная избыточность, которой обладает любой человеческий язык, предоставляет людям весьма широкие возможности для такого варьирования. С другой стороны, слушающие обладают достаточными когнитивными возможностями, чтобы “угадать” (в большинстве случае правильно), какой смысл вкладывал в свое сообщение говорящий.

Так что, может быть, не случайно, что сигналы, которые не обнаруживают прямой связи ни с наличной ситуацией, ни с реакцией особей, воспринимающих сигнал, обнаруживаются в достаточно развитых (насчитывающих много сигналов) коммуникативных системах, у видов, обладающих высоким когнитивным потенциалом, - таких, как шимпанзе, волки, муравьи-древоточцы или дельфины. Нельзя исключать, что по достижении определенного уровня организации коммуникативная система обретает возможность включать в себя многозначные сигналы, варьировать “смысл” сигнала в зависимости от различных ситуативно определяемых параметров.

Некоторые элементы такой возможности уже обнаружены в исследованных коммуникативных системах животных. Так, например, у павианов чакма (Papio ursinus или Papio cynocephalus ursinus ) имеются два акустически различных сигнала-“ворчания”: один из них выражает желание перейти (всей группой) через полное опасностей открытое пространство в другой участок леса, другой - стремление понянчить детеныша. Как было установлено Дрю Рэндоллом, Робертом Сифардом, Дороти Чини и Майклом Оуреном, реакция на оба эти сигнала зависит от конкретной ситуации (например, подается сигнал на границе лесного участка или в его середине), а также от ранговых взаимоотношений подающей и принимающей сигнал особи 82 . Зависимость от контекста была обнаружена и в такой развитой системе коммуникации, как феромонная коммуникация у насекомых. Как показали опыты на дрозофилах, один и тот же химический сигнал-феромон “может нести разный смысл в зависимости от контекста, то есть комплекса других феромонов, а также поведенческих, зрительных и звуковых сигналов” 83 .

Еще один аспект исследования животных в контексте происхождения человеческого языка - это поиск гомологий и преадаптаций. Какие свойства, имеющиеся как у человека, так и у приматов, и тем самым наличествовавшие, вероятно, у общего предка человека и его ближайших родственников, были полезны для формирования языка? Каковы были стартовые условия глоттогенеза?

Как показывают исследования, у обезьян имеются гомологи основных речевых центров - зоны Брока и зоны Вернике 84 . Эти зоны соответствуют человеческим не только по своему расположению, но и по клеточному составу, а также по входящим и исходящим нейронным связям; кроме того, эти области - как у человека, так и у человекообразных обезьян - соединены между собой пучком волокон (это было показано как отечественными, так и зарубежными исследователями 85 ).

Но у обезьян эти отделы мозга в гораздо меньшей степени, чем у людей, связаны со звуковой коммуникацией, поскольку они не задействованы в производстве сигналов. Гомолог зоны Брока “отвечает” за автоматические комплексные поведенческие программы, осуществляемые мышцами лица, рта, языка и гортани, а также за координированные программы действий правой руки 86 . Гомолог зоны Вернике (и соседние участки мозга) используются для распознавания звуковых сигналов, а также для того, чтобы различать сородичей по голосу. Кроме того, “различные подобласти этих гомологов получают данные от всех частей мозга, задействованных при слушании, ощущении прикосновения во рту, языке и гортани и областях, где сливаются потоки информации от всех органов чувств” 87 .

По предположению Эриха Джарвиса, можно проследить гомологию в путях движения слуховой информации в мозгу. Эти пути сходны у млекопитающих, птиц и рептилий - значит, база для звукового обучения была заложена по меньшей мере 320 млн. лет назад 88 .

Система коммуникации у шимпанзе использует все возможные каналы связи - и зрительный, и слуховой, и обонятельный, и осязательный, при этом “большая часть информации передается по двум и более каналам” 89 . В ней присутствуют и непроизвольные, чисто природные сигналы, такие, как набухание половой кожи у самок, свидетельствующее о рецептивности, и сигналы намеренные, которые одна особь осознанно подает другой. Звуковые сигналы относятся к первой категории - они являются врожденными (по крайней мере, они возникают даже в условиях депривации, когда подрастающий шимпанзе не имеет возможности перенять их от сородичей) 90 и издаются непроизвольно. Как пишет Дж. Гудолл, “произвести звук в отсутствие подходящего эмоционального состояния - это для шимпанзе почти непосильная задача” 91 . Супруги Кэти и Кейт Хейс, которые пытались научить говорить воспитывавшуюся в домашних условиях самку шимпанзе Вики, свидетельствуют, что она абсолютно не могла издавать какие-либо звуки намеренно 92 . Все, что может сделать шимпанзе, - это подавить звук. Дж. Гудолл описывает случай 93 , когда подросток Фиган, которому исследователи дали бананов, издал пищевой крик, на крик прибежали более старшие самцы и бананы у Фигана отобрали. В следующий раз Фиган повел себя хитрее - он волевым усилием подавил пищевой крик (и получил бананы), но при этом, по словам Гудолл, звуки “застревали у него где-то в горле, и он, казалось, едва не задохнулся”. Будучи связаны с эмоциями, “крики шимпанзе составляют непрерывный ряд” 94 , поэтому разные исследователи насчитывают в вокальном репертуаре шимпанзе разное количество сигналов.

Случай с Фиганом, кстати, - нагляднейшее доказательство того, что эволюция коммуникативной системы ориентирована на выгоды группы, а не отдельной особи. Склонность подавать сигналы поощряется отбором даже в том случае, когда для сигнализирующей особи это оказывается скорее вредным, как для Фигана, лишившегося (в первый раз) бананов.

Впрочем, возможно, что представление об исключительно эмоциональном характере звуковых сигналов шимпанзе подлежит пересмотру. По данным Кейти Слокомбе и Клауса Цубербюлера, пищевые крики шимпанзе референциальны. Исследователи записали на магнитофон крики шимпанзе, которым дали яблок, и крики шимпанзе, которым дали плодов хлебного дерева. При проигрывании магнитофонных записей обезьяны достоверно различали эти два типа криков - они проводили более интенсивные поиски под тем деревом, на плоды которого указывал услышанный ими крик. Шимпанзе из контрольной группы, которым этих записей не проигрывали, искали под деревьями обоих видов примерно поровну 95 . Сходные результаты были получены и для бонобо - Занна Клей и Клаус Цубербюлер выделили у них пять различных пищевых криков, издаваемых с разной частотой в зависимости от степени предпочтительности пищи 96 . Даже если дело не в референциальности, а просто в том, что разные виды пищи вызывают у обезьян несколько разные эмоции (например, потому, что одни из них вкуснее, чем другие), способность различать такие сигналы и успешно соотносить их с реалиями внешнего мира является неплохой преадаптацией к языку.

Возможно, в звуковых сигналах шимпанзе и бонобо будет обнаружено еще одно “человеческое” свойство - комбинативность: как показывают исследования, их так называемые долгие крики “состоят из ограниченного числа базовых элементов, которые могут комбинироваться по-разному в зависимости от ситуации и у разных животных” 97 .

В некоторой степени в коммуникации шимпанзе представлено и звукоподражание: по данным Джона Митани и Карла Брандта 98 , самцы, присоединяясь к долгим крикам других самцов, стремятся воспроизводить в своем крике некоторые акустические параметры вокализации “собеседника”.

Кроме звуков, шимпанзе используют мимику, жесты, позы, действия (касания, похлопывания, объятия, поцелуи, шлепки, затрещины), манипуляции с предметами. Например, для умиротворения агрессора может использоваться поза подставления (шимпанзе как бы подставляется для спаривания); подскакивание и взмах рукой являются агрессивными сигналами. С той же целью демонстрации агрессивных намерений самцы шимпанзе могут волочить по земле ветки, перекатывать камни, раскачивать кусты. Укрепляет дружественные отношения груминг - обыскивание шерсти (кстати, не только у шимпанзе, см. фото 26 на вклейке).

Как показали М.А. Дерягина и С.В. Васильев, процесс коммуникации у обезьян - причем не только у человекообразных, но и у других видов (в их работе исследовались бурые капуцины Cebus apella , яванские макаки Macaca fascicularis , макаки-резусы Macaca mulatta , бурые макаки Macaca arctoides , японские макаки Macaca fuscata , павианы гамадрилы Papio hamadryas , белорукие гиббоны Hylobates lar и шимпанзе Pan troglodytes ) - “представляет собой последовательности… комплексов коммуникации” 99 . Комплексы состоят из элементов разной модальности, например, из позы, мимики и жеста. Некоторые комплексы являются общими для всех изученных видов, например: “пристальный взгляд - выпад, оскал - агрессивный акустический сигнал - пристальный взгляд - флаш <быстрое движение бровями вверх. - С.Б.> - выпад” 100 , другие характерны лишь для отдельных видов. Например, только у шимпанзе зафиксирован такой комплекс коммуникации: “пристальный взгляд - подход - протягивание руки - дружелюбный контактный звук” 101 . Каждый отдельный элемент такого комплекса может быть разложен на элементарные незначимые составляющие, например, любой элемент мимики представляет собой движение целого ряда лицевых мышц - другие комбинации движений тех же мышц дают другое “выражение лица”. Тем самым, можно констатировать, что коммуникации обезьян в природе (а не только в условиях “языкового проекта”) присуще двойное членение.

Шимпанзе могут изобретать ad-hoc-сигналы, и сигналы эти понимаются сородичами не хуже, чем врожденные или давно известные. В книге Дж. Гудолл “Шимпанзе в природе: поведение” описывается такой случай 102 , происшедший в 1964 г.: самец шимпанзе Майк, увидев группу высокоранговых самцов неподалеку от лагеря исследователей, пошел в лагерь. Там “он подхватил две пустые канистры, и, держа их за ручки, по одной в каждой руке, пошел (выпрямившись) на прежнее место, сел и уставился на других самцов, которые были тогда все более высокого по сравнению с ним ранга. Они продолжали спокойно обыскивать друг друга, не обращая на него внимания. Спустя секунду Майк начал едва заметно раскачиваться из стороны в сторону, а шерсть его слегка вздыбилась. Остальные самцы по-прежнему игнорировали его присутствие. Постепенно Майк стал раскачиваться сильнее, шерсть на нем полностью ощетинилась, и с ухающими звуками он внезапно бросился на старших по рангу, ударяя канистрами впереди себя. Остальные самцы убежали. Иногда Майк повторял свое выступление по четыре раза кряду…”. В результате таких действий Майку удалось донести до сородичей идею, что его следует признать старшим по рангу - и этот ранг он сохранял потом долгие годы.

Шимпанзе могут несколько изменять значение сигналов с учетом наличной ситуации. Гудолл описывает случай, когда взрослый самец Фиган (тот самый, который, будучи подростком, смог не закричать при виде бананов) использовал знак для того, чтобы побудить другого самца, Жомео, помочь ему охотиться на поросят кистеухой свиньи. Он, “пристально взглянув на заросли, где исчезла свинья с выводком, обернулся к Жомео и сделал характерный жест, покачав веткой, - так обычно самцы во время ухаживания подзывают к себе самок. Жомео поспешил к нему, оба устремились в заросли, и один поросенок был пойман” 103 .

Ad-hoc-сигналы могут закрепляться и передаваться по традиции - различной для разных популяций. Например, шимпанзе, живущие в горах Махале, ухаживая за самками, с громким звуком обгрызают листья, а шимпанзе национального парка Таи в аналогичной ситуации постукивают костяшками пальцев по стволу небольшого деревца 104 . С другой стороны, у шимпанзе из Боссу (Гвинея) громкое обгрызание листьев принято считать приглашением к игре 105 . По данным Симоне Пики и Джона Митани 106 , шимпанзе сообщества Нгого в национальном парке Кибале (Уганда) используют жест “громкое почесывание” в качестве указания на то конкретное место на своем теле, которое предлагается обыскать грумингующему. Такого же типа жест - преувеличенно заметное громкое почесывание бока - шимпанзе Гомбе используют в другой функции: так мать, сидящая на нижних ветвях дерева, призывает залезшего повыше отпрыска взобраться на нее, чтобы вместе спуститься на землю 107 . Отечественный приматолог Леонид Александрович Фирсов, много лет наблюдая поведение шимпанзе в лабораторных и полевых условиях, неоднократно становился свидетелем того, как обезьяны “изобретали” собственные ad-hoc-сигналы 108 - и звуковые, и жестовые - чтобы привлечь в себе внимание. Эти (неврожденные!) формы коммуникации позволяли им успешно добиваться контакта с людьми, которые могли не только “пообщаться” с животными и, скажем, приласкать их, но и выпустить из вольера или угостить чем-нибудь вкусненьким. Если тот или иной “знак” приводил к успеху, животное повторяло его и в следующий раз, кроме того, этот сигнал перенимали (путем подражания) другие обезьяны, видевшие его успешное употребление. Самка шимпанзе Эля, перемещенная на несколько лет из Ростовского зоопарка в Колтуши, научилась у тамошних шимпанзе многим таким сигналам, а потом, когда она вернулась в Ростов, эти неврожденные элементы коммуникативного поведения переняли от нее другие шимпанзе. Как пишет Л.А. Фирсов, “факт более чем интересный” 109 .

Умеют шимпанзе и намеренно придавать своим действиям повышенную заметность, вкладывая в них тем самым коммуникативную составляющую, - об этом говорит рассмотренный выше (гл. 3) случай, когда шимпанзе-мать показывала своей дочери, как надо колоть орехи. Действие, в обычной ситуации служащее вполне практическим надобностям, было выполнено медленнее и отчетливее, чем необходимо для того, чтобы расколоть орех, и цель его явно состояла в том, чтобы дочь смогла приобрести знание, как следует в такой ситуации держать в руке камень.

Как пишет Дж. Гудолл, шимпанзе “проявляют большую изобретательность в коммуникативных актах. Действительные сигналы, подаваемые самцом во время ухаживания, варьируют как у одного и того же самца в разных ситуациях, так и у разных самцов; самка почти наверняка реагирует на всю совокупность разнообразных сигналов, а не на отдельные элементы” 110 .

Основой для столь свободного превращения действий в сигналы служит то, что шимпанзе могут “предвидеть вероятный характер реакции сородичей на свое собственное поведение или на действия других шимпанзе и в соответствии с этим видоизменять свои поступки”, а также “внимательно подмечать разного рода непроизвольные, ненаправленные детали поведения своих сородичей, которые могут служить случайными сигналами” 111 . Поскольку шимпанзе достаточно умны, чтобы верно истолковывать пластичное поведение своих сородичей и принимать его в расчет при построении собственной линии поведения, их легко заставить истолковывать те элементы поведения, которые сородичи могут специально сделать особенно заметными, - в этом случае и получаются ad-hoc-сигналы. Граница между просто поведением и сигналами достаточно зыбка, поскольку даже совершенно лишенные сигнальной составляющей действия могут быть поняты сородичами, которые изменят в связи с этим собственное поведение. О сигнализации можно говорить лишь постольку, поскольку некоторые свои действия шимпанзе намеренно сопровождают специальными деталями, способствующими усилению заметности.

Таким образом, можно видеть, что достаточно многие свойства, полезные для развития языка, у шимпанзе имеются. Вероятно, имелись они и у общих предков шимпанзе и человека - а если даже развились независимо, то это можно рассматривать как очередное проявление сформулированного Николаем Ивановичем Вавиловым закона гомологических рядов в наследственной изменчивости (“виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов”).

Чрезвычайно интересные закономерности эволюции коммуникативных систем в рамках отряда приматов выявили М.А. Дерягина и С.В. Васильев 112 . По их данным, хотя все приматы используют многие каналы передачи информации - визуальный, акустический и ольфакторный (запаховый), - у разных таксонов наиболее важная роль в коммуникации закреплена за разными каналами. У полуобезьян - лемуров и галаго - ведущая роль принадлежит ольфакторному каналу, у широконосых обезьян на первый план выдвигается акустический канал (у некоторых - наряду с ольфакторным), у узконосых (кроме человека) - визуальный. У более прогрессивных таксонов не только увеличивается общее число сигналов, но и происходит перераспределение долей сигналов разного типа в коммуникативном инвентаре. Например, число различных поз и тактильных элементов увеличивается у шимпанзе по сравнению с низшими обезьянами примерно вдвое, а число жестов - в 4–5 раз 113 . Сходство между отдельными сигналами (как формальное, так и “смысловое”) дает возможность предположить, что наиболее архаичными коммуникативными элементами являются позы (“они примерно с одинаковой частотой встречаются у всех исследованных нами видов”, пишут М.А. Дерягина и С.В. Васильев 114 ). Жесты, напротив, оказываются наиболее прогрессивными - они “моложе” не только поз, но и мимики. Еще одна эволюционная тенденция - увеличение числа дружелюбных сигналов в репертуаре. Из 13 общих для всех исследованных видов коммуникативных комплексов “10 связаны с агрессивным контекстом поведения” 115 . “Вероятно, первичная функция комплексов коммуникации состояла в предотвращении агрессии, особенно ее контактных деструктивных форм” 116 . Впоследствии получают развитие дружелюбные элементы коммуникации - их число растет у более прогрессивных видов по сравнению с более примитивными, у шимпанзе они складываются в особые дружелюбные комплексы. Кроме того, у шимпанзе усиливается связь “жестов и звуков в дружелюбной сфере общения” 117 . Наиболее прогрессивной чертой коммуникативной системы является возможность “объединять элементы в комплексы и перекомбинировать их в новой ситуации” 118 - отчетливее всего она проявляется у бонобо в дружественных социальных контактах. Такой эволюционный путь развития коммуникативной системы - от агрессивных контактов к дружеским и кооперативным - представляется очень важным для становления человеческого языка.

Общие закономерности эволюции выполняются для самых разных таксонов. Поэтому в ходе формирования языка естественно ожидать, чтобы происходили такие процессы, как появление в сигналах компонентов “повышенной заметности” (легко регистрируемых детекторами), превращение иконических сигналов в символьные, эмоциональных - в референциальные, врожденных - в выучиваемые, возникновение возможности передавать информацию о том, что не находится непосредственно в поле наблюдения, а также сжимать информацию. Все эти процессы являются неотъемлемым свойством развития коммуникативных систем в природе.

Объяснять же надо другое. Поскольку коммуникация, как уже говорилось, весьма дорого “стоит”, идти на такие затраты можно только во имя чего-то действительно жизненно необходимого. Поэтому в “сферу действия” коммуникативной системы у животных бывают включены только самые важные для жизни вида моменты. И это порождает неизбежную ограниченность встречающихся в природе коммуникативных систем. Соответственно, гипотеза о происхождении языка должна непременно ответить на вопрос о том, какие факторы окружающей среды стали настолько жизненно важны для наших предков, что им понадобилась именно такая коммуникативная система (с огромным числом понятий - от наиболее конкретных до самых абстрактных). Кроме того, она должна также объяснить, с какого момента и по каким причинам (и у какого вида гоминид) бюджет энергии приобрел такие характеристики, что поддержание столь колоссальной системы коммуникации стало возможным без угрозы для общей приспособленности, - а может быть, гоминиды (по крайней мере, с какого-то времени) стали производить столько “лишней” энергии, что развитие языка могло продолжаться и тогда, когда жесткой необходимости в этом уже не было.